I am a
Home I AM A Search Login

Papers of the Week

Papers: 21 Oct 2023 - 27 Oct 2023

2023 Oct 20

Eur J Pharmacol


Mechanisms of the PD-1/PD-L1 pathway in itch: From acute itch model establishment to the role in chronic itch in mouse.


Xu ZH, Zhang JC, Chen K, Liu X, Li XZ, Yuan M, Wang Y, Tian JY


Programmed cell death receptor/ligand 1 (PD-1/PD-L1) blockade therapy for various cancers induces itch. However, few studies have evaluated the mechanism underlying PD-1/PD-L1 inhibitor-induced itch. This study aimed to establish and evaluate a mouse model of acute itch induced by PD-1/PD-L1 inhibitors and to explore the role of the PD-1/PD-L1 pathway in chronic itch. The intradermal injection of the PD-1/PD-L1 small molecule inhibitors, or anti-PD-1/PD-L1 antibodies in the nape of the neck in the mice elicited intense spontaneous scratches. The model was evaluated using pharmacological methods. The number of scratches was reduced by naloxone but not by antihistamines or the transient receptor potential (TRP) channel inhibitor. Moreover, the PD-1 receptor was detected in the spinal cord of the mouse models of chronic itch that exhibited acetone, diethyl ether, and water (AEW)-induced dry skin, imiquimod-induced psoriasis, and 1-fluoro-2,4-dinitrobenzene (DNFB)-induced allergic contact dermatitis. Intrathecal PD-L1 (1 μg, 4 times a week for 1 week) suppressed the activation of the microglia in the spinal dorsal horn to relieve the chronic itch that was elicited by imiquimod-induced psoriasis and DNFB-induced allergic contact dermatitis. Although the activation of the microglia in the spinal dorsal horn was not detected in the AEW-treated mice, intrathecal PD-L1 still reduced the number of scratches that were elicited by AEW. Our findings suggest that histamine receptor inhibitors or TRP channel inhibitors have limited effects on PD-1/PD-L1 inhibitor-induced itch and that spinal PD-1 is important for the spinal activation of the microglia, which may underlie chronic itch.