- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Pain that arises spontaneously is considered more clinically relevant than pain evoked by external stimuli. However, measuring spontaneous pain in animal models in preclinical studies is challenging due to methodological limitations. To address this issue, recently we developed a deep learning (DL) model to assess spontaneous pain using cellular calcium signals of the primary somatosensory cortex (S1) in awake head-fixed mice. However, DL operate like a “black box”, where their decision-making process is not transparent and is difficult to understand, which is especially evident when our DL model classifies different states of pain based on cellular calcium signals. In this study, we introduce a novel machine learning (ML) model that utilizes features that were manually extracted from S1 calcium signals, including the dynamic changes in calcium levels and the cell-to-cell activity correlations.