I am a
Home I AM A Search Login

Papers of the Week

Papers: 15 Jul 2023 - 21 Jul 2023

Basic Science

Animal Studies, Molecular/Cellular, Neurobiology


2023 Jul 05

Int J Mol Sci




Influence of Inflammatory Pain and Dopamine on Synaptic Transmission in the Mouse ACC.


Darvish-Ghane S, Baumbach J, Martin LJ


Dopamine (DA) inhibits excitatory synaptic transmission in the anterior cingulate cortex (ACC), a brain region involved in the sensory and affective processing of pain. However, the DA modulation of inhibitory synaptic transmission in the ACC and its alteration of the excitatory/inhibitory (E/I) balance remains relatively understudied. Using patch-clamp recordings, we demonstrate that neither DA applied directly to the tissue slice nor complete Freund’s adjuvant (CFA) injected into the hind paw significantly impacted excitatory currents (eEPSCs) in the ACC, when recorded without pharmacological isolation. However, individual neurons exhibited varied responses to DA, with some showing inhibition, potentiation, or no response. The degree of eEPSC inhibition by DA was higher in naïve slices compared to that in the CFA condition. The baseline inhibitory currents (eIPSCs) were greater in the CFA-treated slices, and DA specifically inhibited eIPSCs in the CFA-treated, but not naïve group. DA and CFA treatment did not alter the balance between excitatory and inhibitory currents. Spontaneous synaptic activity revealed that DA reduced the frequency of the excitatory currents in CFA-treated mice and decreased the amplitude of the inhibitory currents, specifically in CFA-treated mice. However, the overall synaptic drive remained similar between the naïve and CFA-treated mice. Additionally, GABAergic currents were pharmacologically isolated and found to be robustly inhibited by DA through postsynaptic D2 receptors and G-protein activity. Overall, the study suggests that CFA-induced inflammation and DA do not significantly affect the balance between excitatory and inhibitory currents in ACC neurons, but activity-dependent changes may be observed in the DA modulation of presynaptic glutamate release in the presence of inflammation.