I am a
Home I AM A Search Login

Papers of the Week


Papers: 26 Oct 2024 - 1 Nov 2024


2024 Oct 17


Int J Mol Sci


39456918


25


20

Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine.

Authors

Galambos AR, Essmat N, Lakatos PP, Szücs E, Boldizsár I, Abbood SK, Karádi DÁ, Kirchlechner-Farkas JM, Király K, Benyhe S, Riba P, Tábi T, Harsing LG, Zádor F, Al-Khrasani M

Abstract

Opioid analgesic tolerance (OAT), among other central side effects, limits opioids’ indispensable clinical use for managing chronic pain. Therefore, there is an existing unmet medical need to prevent OAT. Extrasynaptic N-methyl D-aspartate receptors (NMDARs) containing GluN2B subunit blockers delay OAT, indicating the involvement of glutamate in OAT. Glycine acts as a co-agonist on NMDARs, and glycine transporters (GlyTs), particularly GlyT-1 inhibitors, could affect the NMDAR pathways related to OAT. Chronic subcutaneous treatments with morphine and NFPS, a GlyT-1 inhibitor, reduced morphine antinociceptive tolerance (MAT) in the rat tail-flick assay, a thermal pain model. In spinal tissues of rats treated with a morphine-NFPS combination, NFPS alone, or vehicle-comparable changes in µ-opioid receptor activation, protein and mRNA expressions were seen. Yet, no changes were observed in GluN2B mRNA levels. An increase was observed in glycine and glutamate contents of cerebrospinal fluids from animals treated with a morphine-NFPS combination and morphine, respectively. Finally, GlyT-1 inhibitors are likely to delay MAT by mechanisms relying on NMDARs functioning rather than an increase in opioid efficacy. This study, to the best of our knowledge, shows for the first time the impact of GlyT-1 inhibitors on MAT. Nevertheless, future studies are required to decipher the exact mechanisms.