I am a
Home I AM A Search Login

Papers of the Week

Papers: 20 Jan 2024 - 26 Jan 2024

2023 Dec 25





Fibromyalgia Animal Models Using Intermittent Cold and Psychological Stress.


Ueda H, Neyama H


Fibromyalgia (FM) is a chronic pain condition characterized by widespread musculoskeletal pain and other frequent symptoms such as fatigue, sleep disturbance, cognitive impairment, and mood disorder. Based on the view that intermittent stress would be the most probable etiology for FM, intermittent cold- and intermittent psychological stress-induced generalized pain (ICGP and IPGP) models in mice have been developed and validated as FM-like pain models in terms of the patho-physiological and pharmacotherapeutic features that are shared with clinical versions. Both models show long-lasting and generalized pain and female-predominant sex differences after gonadectomy. Like many other neuropathic pain models, ICGP and IPGP were abolished in lysophosphatidic acid receptor 1 (LPAR) knock-out mice or by LPAR antagonist treatments, although deciding the clinical importance of this mechanism depends on waiting for the development of a clinically available LPAR antagonist. On the other hand, the nonsteroidal anti-inflammatory drug diclofenac with morphine did not suppress hyperalgesia in these models, and this is consistent with the clinical findings. Pharmacological studies suggest that the lack of morphine analgesia is associated with opioid tolerance upon the stress-induced release of endorphins and subsequent counterbalance through anti-opioid NMDA receptor mechanisms. Regarding pharmacotherapy, hyperalgesia in both models was suppressed by pregabalin and duloxetine, which have been approved for FM treatment in clinic. Notably, repeated treatments with mirtazapine, an α2 adrenergic receptor antagonist-type antidepressant, and donepezil, a drug for treating Alzheimer’s disease, showed potent therapeutic actions in these models. However, the pharmacotherapeutic treatment should be carried out 3 months after stress, which is stated in the FM guideline, and many preclinical studies, such as those analyzing molecular and cellular mechanisms, as well as additional evidence using different animal models, are required. Thus, the ICGP and IPGP models have the potential to help discover and characterize new therapeutic medicines that might be used for the radical treatment of FM, although there are several limitations to be overcome.