I am a
Home I AM A Search Login

Papers of the Week


Papers: 11 Feb 2023 - 17 Feb 2023

RESEARCH TYPE:
Basic Science


Animal Studies, Molecular/Cellular, Neurobiology

PAIN TYPE:
Orofacial/Head Pain


2023 Feb 11


Brain Res Bull


36781112

Emerging role of microglia and astrocyte in the affective-motivational response induced by a rat model of persistent orofacial pain.

Authors

Nascimento GC, Lucas G, Leite-Panissi CRA

Abstract

Few studies are approaching the neural basis underlying the aggregation of emotional disorders in orofacial pain despite the stress, depression, and anxiety are some of the most commonly reported risk factors. Using a persistent orofacial pain rat model induced by complete Freund’s adjuvant (CFA) injection into the temporomandibular joint, we have investigated the plasticity astrocytes and microglia key brain regions for the affective-emotional component of pain. We measured the expression and morphologic pattern of reactivation of glial fibrillary acidic protein (GFAP, astrocyte marker) and Iba-1 (microglial marker) by western blotting and immunohistochemistry analysis. The results showed no alterations on motor activity during inflammatory pain, indicating an exclusive effect of nociceptive behavior on the plasticity of limbic regions. CFA-induced temporomandibular inflammation changed GFAP and Iba-1 expression in distinct regions related to emotional behavior in a time-dependent manner. A significant increase in GFAP and Iba-1 expression was observed in the central nucleus of the amygdala, hippocampus and periaqueductal grey matter from day 3 to day 10 post-CFA injection. Moreover, a positive correlation between GFAP and Iba-1 upregulation and an increased mechanical hypersensitivity was observed. Conversely, no change on GFAP and Iba-1 expression was observed in the hypothalamus and colliculus during orofacial inflammatory pain. Our data suggest an important role for glial cells in the affective-motivational dimension of orofacial pain beyond their well-explored role in the traditional nociceptive transmission circuits.