I am a
Home I AM A Search Login

Papers of the Week


Papers: 12 April 2025 - 18 April 2025


2025 Apr 14


eNeuro


40228867

Editor's Pick

Electrical Stimulation of the M1 Activates Somatostatin Interneurons in the S1: Potential Mechanisms Underlying Pain Suppression.

Authors

Park J, Kim YG, Kim T, Baek M

Abstract

Chronic pain affects millions globally, yet no universally effective treatment exists. The primary motor cortex (M1) has been a key target for chronic pain therapies, with electrical stimulation of the M1 (eMCS) showing promise. However, the mechanisms underlying M1-mediated analgesic effects are not fully understood. We investigated the role of the primary somatosensory cortex (S1) in M1-mediated analgesia using a neuropathic pain mouse model. In this model, neuropathic pain is associated with increased spontaneous activity of layer V pyramidal neurons (LV-PNs) in the S1, partly attributed to the reduced activity of somatostatin-expressing inhibitory neurons (SST INs), which normally suppress LV-PNs. While manipulation of either LV-PNs or SST INs has been shown to alleviate pain, the role of S1 in M1-mediated analgesia has not been identified. Using multichannel silicon probes, we applied eMCS to neuropathic mice and observed significant analgesia. Histological analyses revealed that eMCS activated SST INs and suppressed hyperactivity of LV-PNs in the S1, suggesting that eMCS suppresses pain by modulating S1 neuronal circuits, alongside other pain-related regions. Notably, eMCS induced long-lasting analgesia, persisting for at least two days post-stimulation. These findings implicate S1 as a critical mediator of eMCS-induced analgesia and suggest eMCS as a potential durable therapeutic strategy for chronic pain. Chronic pain is a devastating disorder that affects over 25% of the global population. The lack of universally and entirely effective treatments, combined with severe social and economic burdens posed by the side effects of current analgesics, underscores the need to explore multifaceted approaches. In this study, we applied a silicon probe to target layer 5 of the M1 region of mice and delivered electrical stimulation to a chronic constriction injury mouse model. Our findings demonstrated that eMCS induced analgesic effects on mechanical stimuli, with the effect notably persisting for at least two days after the cessation of eMCS. As a potential mechanism, we identified SST+ neuronal activation in S1, along with other previously known brain regions influenced by eMCS.