I am a
Home I AM A Search Login

Papers of the Week

Papers: 2 Mar 2024 - 7 Mar 2024

2024 Mar 03

J Med Chem


Discovery of TRPA1 Antagonist : Derisking Preclinical Toxicity and Aldehyde Oxidase Metabolism with a Potential First-in-Class Therapy for Respiratory Disease.


Terrett JA, Ly JQ, Katavolos P, Hasselgren C, Laing S, Zhong F, Villemure E, Déry M, Larouche-Gauthier R, Chen H, Shore DG, Lee WP, Suto E, Johnson K, Brooks M, Stablein A, Beaumier F, Constantineau-Forget L, Grand-Maître C, Lépissier L, Ciblat S, Sturino C, Chen Y, Hu B, Elstrott J, Gandham V, Joseph V, Booler H, Cain G, Chou C, Fullerton A, Lepherd M, Stainton S, Torres E, Urban K, Yu L, Zhong Y, Bao L, Chou KJ, Lin J, Zhang W, La H, Liu L, Mulder T, Chen J, Chernov-Rogan T, Johnson AR, Hackos DH, Leahey R, Shields SD, Balestrini A, Riol-Blanco L, Safina BS, Volgraf M, Magnuson S, Kakiuchi-Kiyota S


Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects , resulting in the discovery and advancement of clinical candidate , currently in Phase II clinical trials for respiratory indications.