- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Animals’ response to a stimulus in one sensory modality is usually influenced by other modalities. One important type of multisensory integration is the cross-modal modulation, in which one sensory modality modulates (typically inhibits) another. Identification of the mechanisms underlying cross-modal modulations is crucial for understanding how sensory inputs shape animals’ perception and for understanding sensory processing disorders. However, the synaptic and circuit mechanisms that underlie cross-modal modulation are poorly understood. This is due to the difficulty of separating cross-modal modulation from multisensory integrations in neurons that receive excitatory inputs from two or more sensory modalities-in which case it is unclear what the modulating or modulated modality is. In this study, we report a unique system for studying cross-modal modulation by taking advantage of the genetic resources in Drosophila. We show that gentle mechanical stimuli inhibit nociceptive responses in Drosophila larvae. Low-threshold mechanosensory neurons inhibit a key second-order neuron in the nociceptive pathway through metabotropic GABA receptors on nociceptor synaptic terminals. Strikingly, this cross-modal inhibition is only effective when nociceptor inputs are weak, thus serving as a gating mechanism for filtering out weak nociceptive inputs. Our findings unveil a novel cross-modal gating mechanism for sensory pathways.