- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
The diagnosis of rare diseases (RDs) is often challenging due to their rarity, variability and the high number of individual RDs, resulting in a delay in diagnosis with adverse effects for patients and healthcare systems. The development of computer assisted diagnostic decision support systems could help to improve these problems by supporting differential diagnosis and by prompting physicians to initiate the right diagnostic tests. Towards this end, we developed, trained and tested a machine learning model implemented as part of the software called Pain2D to classify four rare diseases (EDS, GBS, FSHD and PROMM), as well as a control group of unspecific chronic pain, from pen-and-paper pain drawings filled in by patients.