- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Varicella zoster virus (VZV) causes childhood chickenpox, becomes latent in sensory ganglia and reactivates years later to cause shingles (Zoster) and postherpetic neuralgia in the elderly and immunosuppressed individuals. Serologic IgG tests can be used to determine if a person has antibodies to VZV from past varicella infection or had received varicella or zoster (shingles) vaccination. Commercial enzyme-linked immunosorbent assays (ELISAs) are currently used for the detection of VZV IgG antibodies in patient serum samples. However, ELISA tests require collection and processing of blood samples in a CLIA laboratory to separate serum or plasma for further testing. In this paper, we describe the development and testing of an antibody based Lateral Flow Immunochromatographic assay (LFA) device for the detection of VZV IgG in fingerstick whole blood. Analytical and clinical analyses were performed to compare the performance characteristics of the Viro VZV IgG LFA (VZV LFA) and the Diamedix VZV IgG ELISA. Analytical studies demonstrated the higher sensitivity of the VZV LFA compared to the ELISA by testing dilutions of the WHO VZV IgG serum International Standard. Clinical performance characteristics of the VZV LFA fingerstick whole blood assay were assessed at three point of care (POC) facilities by untrained users testing samples from 300 prospectively enrolled study subjects. VZV LFA results were compared with results obtained by testing serum samples obtained from the same study participants by the Diamedix VZV IgG ELISA. Two specimens with invalid results by the LFA assay were not included in the LFA performance calculations and nine equivocal ELISA results were included as positive for IgG results . The results from all three POC clinical sites demonstrated the higher sensitivity/positive percent agreement (PPA) (99.26%, 95% CI: 97.34-99.80) of the VZV LFA compared to the Diamedix VZV IgG ELISA (94.08%, 95% CI: 90.72-96.27). The specificity/negative percent agreement (NPA) of the VZV LFA compared to the ELISA test was calculated initially to be 39.29% (95% CI: 23.57-57.59) with 19 discordant test results out of 298 test results between the two assays (17 LFA positive/ELISA negative and two LFA negative/ELISA positive). The PPA and true NPA of the VZV LFA were determined by testing all 298 samples, including the discordant (19) and all concordant negative and positive (279) study subject serum samples, before and after blocking VZV gE antibody sites in the samples by spiking with VZV LFA gE capture antigen. The NPA improved to 100% (95% CI: 74.12-100) after the procedure when compared to the ELISA test results. The comparator ELISA PPA based on the spiking/blocking study remained as 94.08%, (95% CI: 90.72-96.27), comparable to test results from untreated samples. The VZV LFA has been demonstrated to be simple and sufficiently robust for use in CLIA-waived POC facilities by untrained healthcare professionals and to detect VZV IgG in 20 min from fingerstick whole blood. The VZV LFA therefore provides a fast, reliable, and highly sensitive method of determining prior VZV viral infection or varicella and zoster vaccination status.