I am a
Home I AM A Search Login

Papers of the Week

Papers: 14 Jan 2023 - 20 Jan 2023

2023 Jan 13

Eur J Med Chem


N-adamantyl-anthranil amide derivatives: New selective ligands for the cannabinoid receptor subtype 2 (CB2R).


Graziano G, Delre P, Carofiglio F, Brea J, Ligresti A, Kostrzewa M, Riganti C, Gioè-Gallo C, Majellaro M, Nicolotti O, Colabufo N A, Abate C, Loza M I, Sotelo E, Mangiatordi G F, Contino M, Stefanachi A, Leonetti F
Eur J Med Chem. 2023 Jan 13; 248:115109.
PMID: 36657299.


Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands are emerging as a novel therapeutic approach. The design of selective ligands is however hampered by the high sequence homology of transmembrane domains of CB1R and CB2R. Based on a recent three-arm pharmacophore hypothesis and latest CB2R crystal structures, we designed, synthesized, and evaluated a series of new N-adamantyl-anthranil amide derivatives as CB2R selective ligands. Interestingly, this new class of compounds displayed a high affinity for human CB2R along with an excellent selectivity respect to CB1R. In this respect, compounds exhibiting the best pharmacodynamic profile in terms of CB2R affinity were also evaluated for the functional behavior and molecular docking simulations provided a sound rationale by highlighting the relevance of the arm 1 substitution to prompt CB2R action. Moreover, the modulation of the pro- and anti-inflammatory cytokines production was also investigated to exert the ability of the best compounds to modulate the inflammatory cascade.