I am a
Home I AM A Search Login

Papers of the Week


2022 Nov 03


J Cereb Blood Flow Metab

Stroke-prone salt-sensitive spontaneously hypertensive rats show higher susceptibility to spreading depolarization (SD) and altered hemodynamic responses to SD.

Authors

Kang E-J, Prager O, Lublinsky S, Oliveira-Ferreira AI, Reiffurth C, Major S, Müller DN, Friedman A, Dreier JP
J Cereb Blood Flow Metab. 2022 Nov 03:271678X221135085.
PMID: 36329390.

Abstract

Spreading depolarization (SD) occurs in a plethora of clinical conditions including migraine aura, delayed ischemia after subarachnoid hemorrhage and malignant hemispheric stroke. It describes waves of near-breakdown of ion homeostasis, particularly Na homeostasis in brain gray matter. SD induces tone alterations in resistance vessels, causing either hyperperfusion in healthy tissue; or hypoperfusion (inverse hemodynamic response = spreading ischemia) in tissue at risk. Observations from mice with genetic dysfunction of the ATP1A2-encoded α-isoform of Na/K-ATPase (αNaKA) suggest a mechanistic link between (1) SD, (2) vascular dysfunction, and (3) salt-sensitive hypertension via αNaKA. Thus, αNaKA-dysfunctional mice are more susceptible to SD and show a shift toward more inverse hemodynamic responses. αNaKA-dysfunctional patients suffer from familial hemiplegic migraine type 2, a Mendelian model disease of SD. αNaKA-dysfunctional mice are also a genetic model of salt-sensitive hypertension. To determine whether SD thresholds and hemodynamic responses are also altered in other genetic models of salt-sensitive hypertension, we examined these variables in stroke-prone spontaneously hypertensive rats (SHRsp). Compared with Wistar Kyoto control rats, we found in SHRsp that electrical SD threshold was significantly reduced, propagation speed was increased, and inverse hemodynamic responses were prolonged. These results may have relevance to both migraine with aura and stroke.