I am a
Home I AM A Search Login

Papers of the Week


Curr Top Membr


TRPV4: Cell type-specific activation, regulation and function in the vertebrate eye.


Lapajne L, Rudzitis CN, Cullimore B, Ryskamp D, Lakk M, Redmon SN, Yarishkin O, Krizaj D
Curr Top Membr. 2022; 89:189-219.
PMID: 36210149.


The architecture of the vertebrate eye is optimized for efficient delivery and transduction of photons and processing of signaling cascades downstream from phototransduction. The cornea, lens, retina, vasculature, ciliary body, ciliary muscle, iris and sclera have specialized functions in ocular protection, transparency, accommodation, fluid regulation, metabolism and inflammatory signaling, which are required to enable function of the retina-light sensitive tissue in the posterior eye that transmits visual signals to relay centers in the midbrain. This process can be profoundly impacted by non-visual stimuli such as mechanical (tension, compression, shear), thermal, nociceptive, immune and chemical stimuli, which target these eye regions to induce pain and precipitate vision loss in glaucoma, diabetic retinopathy, retinal dystrophies, retinal detachment, cataract, corneal dysfunction, ocular trauma and dry eye disease. TRPV4, a polymodal nonselective cation channel, integrate non-visual inputs with homeostatic and signaling functions of the eye. The TRPV4 gene is expressed in most if not all ocular tissues, which vary widely with respect to the mechanisms of TRPV4 channel activation, modulation, oligomerization, and participation in protein- and lipid interactions. Under- and overactivation of TRPV4 may affect intraocular pressure, maintenance of blood-retina barriers, lens accommodation, neuronal function and neuroinflammation. Because TRPV4 dysregulation precipitates many pathologies across the anterior and posterior eye, the channel could be targeted to mitigate vision loss.