I am a
Home I AM A Search Login

Papers of the Week

Papers: 24 Sep 2022 - 30 Sep 2022

2022 Sep 23

Proc Inst Mech Eng H

Role of Artificial Intelligence and Machine Learning in the prediction of the pain: A scoping systematic review.


Sankaran R, Kumar A, Parasuram H
Proc Inst Mech Eng H. 2022 Sep 23:9544119221122012.
PMID: 36148916.


Artificial Intelligence in healthcare is growing quickly in diagnostics and treatment management. Despite the quantity and variety of studies its role in clinical care is not clear. To identify the evidence gaps and characteristics of the Artificial Intelligence and Machine Learning techniques in predicting/diagnosing the pain? Pubmed/Embase were searched from the inception to October 2021 for articles without any language restrictions specifically addressing the following: the accuracy of AI in pain considering Brain Imaging, Patient-reported measures, and Electrophysiology, the ability of AI to differentiate stratify severity/types of pain, the ability of AI to predict pain and lastly the most accurate AI technique for given inputs. All the included studies were on humans. Eight hundred forty abstracts were reviewed, and 23 articles were finally included. Identified records were independently screened and relevant data was extracted. We performed conceptual synthesis by grouping the studies using available concepts of AL/ML techniques in diagnosing pain. Then we summarized the number of features/physiological measurements. Structured tabulation synthesis was used to show patterns predictions along with a narrative commentary. A total of 23 articles, published between 2015 and 2020 from 12 countries were included. Most studies were experimental in design. The most common design was cross sectional. Chronic or acute pains were predicted more often. Compared to control, the pain prediction was in the range of 57%-96% by AI techniques. Support Vector Machine and deep learning showed higher accuracy for classifying pain. From this study, it can be inferred that AI/ML can be used to differentiate healthy controls from patients. It can also facilitate categorizing them into new and different clinical subgroups. Lastly, it can predict future pain. The limitations are with respect to studies done after the search period. AL/ ML has a supportive role in pain diagnostics.