I am a
Home I AM A Search Login

Papers of the Week

Papers: 21 Oct 2023 - 27 Oct 2023

2023 Oct 21



2-Hydroxybenzohydrazide as a novel potential candidate against nociception, inflammation, and pyrexia: in vitro, in vivo, and computational approaches.


Ali G, Islam NU, Qaim M, Ullah R, Jan MS, Shabbiri K, Shafique M, Ayaz M


The current study was designed to evaluate the 2-hydroxybenzohydrazide (HBH) as a drug having efficacy against pyrexia, inflammation, and nociception. Besides, the therapeutic effects of HBH on oxidative stress and C-reactive proteins were also evaluated. The pharmacological studies on HBH (20-60 mg/kg) were conducted using nociception, inflammation, and pyrexia standard models. Naloxone antagonism was performed to assess the possible involvement of opioidergic mechanisms. The antioxidant study was conducted on ABTS and DPPH assays using gallic acid as a standard. Moreover, the binding capability of HBH with enzymes cyclooxygenase-I/II (COX-I/II) was determined using molecular modeling analysis. The findings indicated that the HBH dose-dependently inhibited pain, inflammation, and pyrexia. The HBH has significant anti-nociceptive and anti-inflammatory activities at 60 mg/kg (p < 0.001), similar to the lower doses of diclofenac sodium (50 mg/kg) and tramadol (30 mg/kg). The HBH at 60 mg/kg reduced pyrexia as paracetamol (150 mg/kg). The HBH at 20-60 mg/kg doses declined the plasma C-reactive protein concentration. The mechanistic studies showed that the anti-nociceptive effect of HBH was antagonized by naloxone, indicating that the opioidergic mechanisms are involved. Furthermore, computational studies showed that the HBH exhibited an affinity for COX-I/II target receptors. The HBH significantly inhibited ABTS and DPPH radicals (IC = 33.81 and 26.74 μg/ml). These results proposed that the HBH has significant antipyretic, anti-inflammatory, and anti-nociceptive activities involving opioidergic mechanism.