I am a
Home I AM A Search Login

Papers of the Week


Papers: 28 May 2022 - 3 Jun 2022


2022 Jul


J Pharmacol Sci


149


3

Involvement of spinal G-protein inwardly rectifying potassium (GIRK) channels in the enhanced antinociceptive effects of the activation of both μ-opioid and cannabinoid CB receptors.

Abstract

Neuropathic pain is refractory to opioid analgesics. Since there are functional linkages between μ-opioid receptors (MOR) and cannabinoid receptors (CBR), the present study was designed to investigate the interactions between MOR and CBR based on antinociceptive effects for neuropathic pain mediated through G protein-coupled inwardly-rectifying potassium channels (GIRKs). The antinociceptive effects against pseudonociceptive response or neuropathic pain of MOR and CBR agonists were assessed in mice with or without partial sciatic nerve ligation. To investigate the functional interaction between MOR and CBR, electrophysiological recording through GIRK was performed using the two-electrode voltage-clamp method in oocytes along with Western blotting in the spinal cord of mice. Co-administration of the MOR agonist DAMGO and the CBR agonist CP55,940 augmented inwardly rectifying K currents in Xenopus oocytes co-expressing MOR, CBR and GIRK1/2. Further, combination of morphine and the CBR agonist WIN-55,212-2 produced prominent antinociceptive effects in an i.t. GIRK1 inhibitor-reversible manner. Furthermore, CBR was upregulated under neuropathic pain in the spinal cord, and such upregulation and antinociceptive effects were not altered by repeated treatment with morphine plus WIN-55,212-2. Our findings suggest that co-administration of MOR and CBR agonists could enhance their antinociceptive effects through GIRK1 in the spinal cord of mice.