I am a
Home I AM A Search Login

Papers of the Week

Papers: 21 May 2022 - 27 May 2022


2022 May 19

Exp Dermatol

Evaluation of itch and pain induced by bovine adrenal medulla (BAM)8-22, a new human model of non-histaminergic itch.


Aliotta G E, Lo Vecchio S, Elberling J, Arendt-Nielsen L
Exp Dermatol. 2022 May 19.
PMID: 35587729.


Chronic itch is a socioeconomic burden with limited management options. Non-histaminergic itch, involved in problematic pathological itch conditions, is transmitted by a subgroup of polymodal C-fibers. Cowhage is traditionally used for studying experimentally induced non-histaminergic itch in humans, but encounter some limitations. The present study therefore aims to design a new human, experimental model of non-histaminergic itch based on the application of bovine adrenal medulla (BAM)8-22, an endogenous peptide that activates MrgprX1 receptor. 22 healthy subjects were recruited. Different concentrations (0.5, 1, and 2 mg/ml) of BAM8-22 solution and vehicle, applied by a single skin prick test (SPT), were tested in the first session. In the second session, the BAM8-22 solution (1 mg/ml) was applied by different number of SPTs (1, 5, and 25) and by heat-inactivated cowhage spicules coated with BAM8-22. Provoked itch and pain intensities were monitored for 9 minutes followed by the measurement of superficial blood perfusion (SBP), mechanical and thermal sensitivity. BAM8-22 induced itch at the concentration of 1 mg/ml, 2 mg/ml (p<0.05), and with the significantly highest intensity when applied through BAM8-22 spicules (p<0.001). No concomitant pain sensation nor increased SBP were observed. SBP increased only in the 25 SPTs area probably due to micro-trauma from the multiple skin penetrations. Mechanical and thermal sensitivities were not affected by any of the applications. BAM8-22 applied through heat-inactivated spicules was the most efficient method to induce itch (without pain nor changes in SBP, mechanical and thermal sensitivity) suggesting BAM8-22 as a novel non-histaminergic, human, experimental itch model.