I am a
Home I AM A Search Login

Papers of the Week

2022 May 03

ACS Omega



Elevated Circulatory Proline to Glutamine Ratio (PQR) in Endometriosis and Its Potential as a Diagnostic Biomarker.


Kusum K, Raj R, Rai S, Pranjali P, Ashish A, Vicente-Muñoz S, Chaube R, Kumar D
ACS Omega. 2022 May 03; 7(17):14856-14866.
PMID: 35557708.


Endometriosis (EM) is a hormone-dependent gynecological disease associated with chronic pelvic pain and altered immuno-inflammatory processes. It shares some cancer-like characteristics such as increased proline biosynthesis and activated glutaminolysis. Both proline and glutamine are interconvertible metabolically, and studies have shown their roles in cancer cell metabolic reprogramming, redox homeostasis, occurrence/development of endometrial carcinoma, and its further progression toward the malignant state. So based on this, we hypothesized that the circulatory proline to glutamine ratio (PQR) would be altered in EM and may serve as an indicative biomarker to improve the clinical diagnosis of EM. In present study, the circulatory-PQR levels were estimated for 39 EM patients and 48 age matched healthy female subjects using 800 MHz NMR spectroscopy. Among 39 EM patients, 15 were in the clinical stages I to II and referred to here as moderate EM (MEM) patients and 24 were in the clinical stages III to IV and referred here as severe EM (SEM) patients. The circulatory-PQR levels were significantly increased in EM patients (0.99 ± 0.13 μM in MEM; 1.39 ± 0.22 μM in SEM) compared to normal control (NC) subjects (0.52 ± 0.05 μM in NC). Further, the circulatory PQR levels exhibit the highest diagnostic potential with area under receiver operating characteristic (AUROC) curve values equal to 0.87 ± 0.04 [95%CI = 0.79-0.96] for MEM and 0.89 ± 0.04 [95% CI = 0.82-0.96] for SEM. These results suggested that circulatory-PQR has significant potential to serve as a noninvasive biomarker for diagnostic/prognostic screening of EM and further underscored the importance of these two nonessential amino acids (proline and glutamine) in cancer metabolism.