I am a
Home I AM A Search Login

Papers of the Week


2022


Oxid Med Cell Longev


2022

Silencing ATF3 Might Delay TBHP-Induced Intervertebral Disc Degeneration by Repressing NPC Ferroptosis, Apoptosis, and ECM Degradation.

Authors

Li Y, Pan D, Wang X, Huo Z, Wu X, Li J, Cao J, Xu H, Du L, Xu B
Oxid Med Cell Longev. 2022; 2022:4235126.
PMID: 35480873.

Abstract

Intervertebral disc degeneration (IDD), being the predominant root cause of lower back pain, has led to an enormous socioeconomic burden in the world. Ferroptosis is an iron-dependent nonapoptotic and nonpyroptotic programmed cell death associated with an increase in reactive oxygen species (ROS), which has been implicated in the pathogenesis of IDD. Activation transcription factor 3 (ATF3) is widely reported to promote ferroptosis and apoptosis in multiple diseases, but its roles and underlying regulatory mechanism in IDD have not been identified. FAoptosis is defined as a mixed cell death consisting of ferroptosis and apoptosis. The loss- and gain-of-function experiments demonstrated that ATF3 positively regulated -butyl hydroperoxide- (TBHP-) induced nucleus pulposus cell (NPC) FAoptosis, ROS production, inflammatory response, and extracellular matrix (ECM) degradation. Furthermore, silencing ATF3 ameliorated the progression of IDD , whereas its overexpression showed the opposite phenotype. Bioinformatics analysis and molecular experiments corroborated that ATF3 is a direct target of miR-874-3p, suggesting that the upregulation of ATF3 in IDD might be caused at least in part due to the downregulation of miR-874-3p in IDD, thereby relieving the inhibition of ATF3 by miR-874-3p. The findings revealed that ATF3 has the potential to be used as a promising therapeutic target against IDD.