- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Fibromyalgia (FM) is a chronic pain disorder characterized by chronic widespread musculoskeletal pain (CWP), resting pain, movement-evoked pain (MEP), and other somatic symptoms that interfere with daily functioning and quality of life. In clinical studies, this symptomology is assessed, while preclinical models of CWP are limited to nociceptive assays. The aim of the study was to investigate the human-to-model translatability of clinical behavioral assessments for spontaneous (or resting) pain and MEP in a preclinical model of CWP. For preclinical measures, the acidic saline model of FM was used to induce widespread muscle pain in adult female mice. Two intramuscular injections of acidic or neutral pH saline were administered following baseline measures, five days apart. An array of adapted evoked and spontaneous pain measures and functional assays were assessed for three weeks. A novel paradigm for MEP assessment showed increased spontaneous pain following activity. For clinical measures, resting and movement-evoked pain and function were assessed in adult women with FM. Moreover, we assessed correlations between the preclinical model of CWP and in women with fibromyalgia to examine whether similar relationships between pain assays that comprise resting and MEP existed in both settings. For both preclinical and clinical outcomes, MEP was significantly associated with mechanical pain sensitivity. Preclinically, it is imperative to expand how the field assesses spontaneous pain and MEP when studying multi-symptom disorders like FM. Targeted pain assessments to match those performed clinically is an important aspect of improving preclinical to clinical translatability of animal models.