- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Exposure to aversive stimuli such as stress results in profound analgesia named stress-induced analgesia (SIA). We previously showed that D1- and D2-like dopamine receptors within the nucleus accumbens (NAc) mediated the SIA in chronic pain. Since the neurophysiological mechanisms responsible for the various pain conditions are different, the present study aimed to examine the role of dopamine receptors within the NAc in the forced swim stress (FSS)-induced analgesia in the tail-flick test as an animal model of acute pain. Ninety-six adult male Wistar rats weighing 200-230 g were unilaterally implanted with a cannula into the NAc. SCH23390 or Sulpiride (0.25, 1, and 4 μg/0.5 μl vehicle), as D1- and D2-like dopamine receptor antagonists, respectively, were microinjected into the NAc, 5 min before exposure to FSS. The vehicle groups received saline or DMSO instead of SCH23390 or Sulpiride, respectively. The tail-flick test was performed in time set intervals after animals were subjected to FSS. The results showed that FSS produces analgesia during the tail-flick test. However, intra-accumbal injection of SCH23390 or Sulpiride attenuated the FSS-induced analgesia. D1-and D2-like dopamine receptor antagonists contributed almost equally to attenuating the antinociceptive responses induced by FSS. It seems that the mesolimbic dopamine system might act as a potential endogenous pain control system in stress conditions. Besides, an improved understanding of this endogenous pain inhibitory system can develop pharmacological and psychological approaches to treat pain.