- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Tapentadol, an analgesic with a dual mechanism of action, involving both μ-opioid receptor agonism and noradrenaline reuptake inhibition (MOP-NRI), was designed for the treatment of moderate to severe pain. However, the widely acknowledged risk of analgesic tolerance and development of physical dependence following sustained opioid use may hinder their effectiveness. One of the possible mechanisms behind these phenomena are alterations in nitric oxide synthase (NOS) system activity. The aim of the study was to investigate the tolerance and dependence potential of tapentadol in rodent models and to evaluate the possible role of nitric oxide (NO) in these processes. Our study showed that chronic tapentadol treatment resulted in tolerance to its antinociceptive effects to an extent similar to tramadol, but much less than morphine. A single injection of a non-selective NOS inhibitor, N-nitro-L-arginine (L-NOArg), reversed the tapentadol tolerance. In dependence studies, repeated administration of L-NOArg attenuated naloxone-precipitated withdrawal in tapentadol-treated mice, whereas a single injection of L-NOArg was ineffective. Biochemical analysis revealed that tapentadol decreased nNOS protein levels in the dorsal root ganglia of rats following 31 days of treatment, while no significant changes were found in iNOS and eNOS protein expression. Moreover, pre-treatment with L-NOArg augmented tapentadol antinociception in an opioid- and α-adrenoceptor-dependent manner. In conclusion, our data suggest that the NOS system plays an important role in the attenuation of tapentadol-induced tolerance and withdrawal. Thus, inhibition of NOS activity can serve as a promising treatment option for long-term tapentadol use by extending its effectiveness and improving the side-effects profile.