I am a
Home I AM A Search Login

Papers of the Week

2021 Jun 04

Brain Res Bull

Bone Mesenchymal Stem Cells Attenuate Resiniferatoxin-induced Neuralgia via Inhibiting TRPA1-PKCδ-P38/MAPK-p-P65 pathway in Mice.


Treatment of neuropathic pain (NP) resulting from nerve injury is one of the most complicated and challenging in modern practice. Pharmacological treatments for NP are not fully effectively and novel approaches are requisite. Recently, transplantation of bone mesenchymal stem cells (BMSCs) has represented a promising approach for pain relief and neural repair, but how it produces beneficial effects on resiniferatoxin (RTX) induced nerve injury is still unclear. Here, we identified the BMSCs' analgesic effects and their potential mechanisms of microglial cells activation on RTX induced neuralgia. Immunostaining, biochemical studies demonstrated that microglia rather than astrocyte cells activation involved in RTX induced mechanical hyperalgesia, whereas the GFP-labeled BMSCs alleviated this mechanical hyperalgesia. Moreover, pain-related TRPA1, PKCδ, CaMKIIɑ (Calcium/calmodulin dependent protein kinase II), P38/MAPK (mitogen-activated protein kinase), p-P65 activation and expression in the spinal cord were significantly inhibited after BMSC administration. In addition, BMSCs treated RTX mice displayed a lower density of mushroom dendritic spines. Our research suggested that activation of PKCδ-CaMKIIɑ-P38/MAPK-p-P65 pathway and mushroom dendritic spines abnormal increase in the spinal cord is the main mechanism of RTX induced neuropathic pain, and transplant of BMSCs to the damaged nerve may offer promising approach for neuropathic pain.