I am a
Home I AM A Search Login

Papers of the Week


Papers: 27 Feb 2021 - 5 Mar 2021


Animal Studies, Pharmacology/Drug Development


2021 Mar 01


Int J Biol Macromol

Jararhagin, a snake venom metalloproteinase, induces mechanical hyperalgesia in mice with the neuroinflammatory contribution of spinal cord microglia and astrocytes.

Authors

Ferraz CR, Carvalho TT, Fattori V, Saraiva-Santos T, Pinho-Ribeiro FA, Borghi SM, Manchope MF, Zaninelli TH, Cunha TM, Casagrande R, Clissa PB, Verri WA
Int J Biol Macromol. 2021 Mar 01.
PMID: 33662422.

Abstract

Jararhagin is a hyperalgesic metalloproteinase from Bothrops jararaca venom. In rodents, jararhagin induces nociceptive behaviors that correlate with an increase in peripheral cytokine levels. However, the role of the spinal cord glia in pain processing after peripheral stimulus of jararhagin has not been investigated. Aiming to explore this proposal, mice received intraplantar (i.pl.) injection of jararhagin and the following parameters were evaluated: hyperalgesia, spinal cord TNF-α, IL-1β levels, and CXCR1, GFAP and p-NFκB activation. The effects of intrathecal (i.t.) injection of TNF-α soluble receptor (etanercept), IL-1 receptor antagonist (IL-1Ra), and inhibitors of NFκB (PDTC), microglia (minocycline) and astrocytes (α-aminoadipate) were investigated. Jararhagin inoculation induced cytokine production (TNF-α and IL-1β) in the spinal cord, which was reduced by treatment with PDTC (40% and 50%, respectively). Jararhagin mechanical hyperalgesia and cytokine production were inhibited by treatment with etanercept (67%), IL-1Ra (60%), PDTC (70%), minocycline (60%) and α-aminoadipate (45%). Furthermore, jararhagin induced an increase in p-NFκB, CXCR1 and GFAP detection in the spinal cord indicating activation of NFκB, microglia and astrocytes. These results demonstrate for the first time that jararhagin-induced mechanical hyperalgesia is dependent on spinal cord activation of glial cells, consequent NFκB activation, and cytokine production in mice.