I am a
Home I AM A Search Login

Papers of the Week

2020 Dec 04

Hematology Am Soc Hematol Educ Program



Managing toxicities of Bruton tyrosine kinase inhibitors.


Lipsky A, Lamanna N
Hematology Am Soc Hematol Educ Program. 2020 Dec 04; 2020(1):336-345.
PMID: 33275698.


Inhibition of Bruton's tyrosine kinase (BTK) has revolutionized the treatment landscape for patients with chronic lymphocytic leukemia (CLL). By targeting this critical kinase in proximal B-cell receptor signaling, BTK inhibitors (BTKis) impair cell proliferation, migration, and activation of NF-κB. Clinically, because indefinite inhibition is a mainstay of therapy, there is an extended period of exposure in which adverse effects can develop. Given the impressive efficacy and activity of BTKis in the treatment of patients with CLL, appropriate management of treatment-emergent adverse events (AEs) is of paramount importance. Here we review the BTKi landscape and present the available toxicity and safety data for each agent. The long-term toxicity profile of ibrutinib, a first-in-class inhibitor, is well characterized and includes a clinically significant incidence of cardiac arrhythmias, bleeding, infection, diarrhea, arthralgias, and hypertension. Acalabrutinib, the initial second-generation BTKi to earn approval from the US Food and Drug Administration, demonstrates improved kinase selectivity for BTK, with commonly observed adverse reactions including infection, headache, and diarrhea. Mediated by both on-target inhibition of BTK and variable off-target inhibition of other kinases including interleukin-2-inducible T-cell kinase (ITK), tyrosine-protein kinase (TEC), and endothelial growth factor receptor (EGFR), the toxicity profile of BTKis is closely linked to their pattern of kinase binding. Other emerging BTKis include second-generation agents with variable degrees of kinase selectivity and third-generation agents that exhibit reversible noncovalent binding to BTK. We also highlight critical considerations for the prevention and monitoring of AEs and offer practical management strategies for treatment-emergent toxicities.