I am a
Home I AM A Search Login

Papers of the Week

Papers: 28 Nov 2020 - 4 Dec 2020


Human Studies

2020 Nov 30


Phenotypic profile clustering pragmatically identifies diagnostically and mechanistically informative subgroups of chronic pain patients.


Gaynor SM, Bortsov A, Bair E, Fillingim RB, Greenspan JD, Ohrbach R, Diatchenko L, Nackley A, Tchivileva IE, Whitehead W, Alonso AA, Buchheit TE, Boortz-Marx RL, Liedtke W, Park JJ, Maixner W, Smith SB
Pain. 2020 Nov 30.
PMID: 33259458.


Traditional classification and prognostic approaches for chronic pain conditions focus primarily on anatomically based clinical characteristics not based on underlying biopsychosocial factors contributing to perception of clinical pain and future pain trajectories. Using a supervised clustering approach in a cohort of temporomandibular disorder (TMD) cases and controls from the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study, we recently developed and validated a rapid algorithm (ROPA) to pragmatically classify chronic pain patients into three groups that differed in clinical pain report, biopsychosocial profiles, functional limitations, and comorbid conditions. The present aim was to examine the generalizability of this clustering procedure in two additional cohorts: a cohort of patients with chronic overlapping pain conditions (Complex Persistent Pain Conditions (CPPC) study), and a real-world clinical population of patients seeking treatment at Duke Innovative Pain Therapies (DIPT). In each cohort, we applied ROPA for cluster prediction, which requires only four input variables: pressure pain threshold (PPT) and anxiety, depression, and somatization scales. In both CPPC and DIPT, we distinguished three clusters, including one with more severe clinical characteristics and psychological distress. We observed strong concordance with observed cluster solutions, indicating the ROPA method allows for reliable subtyping of clinical populations with minimal patient burden. The ROPA clustering algorithm represents a rapid and valid stratification tool independent of anatomic diagnosis. ROPA holds promise in classifying patients based on pathophysiological mechanisms rather than structural or anatomical diagnoses. As such, this method of classifying patients will facilitate personalized pain medicine for patients with chronic pain.