I am a
Home I AM A Search Login

Papers of the Week


2020 Nov 19


Neurochem Res

MicroRNA-139-5p Promotes Functional Recovery and Reduces Pain Hypersensitivity in Mice with Spinal Cord Injury by Targeting Mammalian Sterile 20-like Kinase 1.

Abstract

Currently, there is no cure for spinal cord injury (SCI), a heavy burden on patients physiology and psychology. We found that microRNA-139-5p (miR-139-5p) expression was significantly downregulated in damaged spinal cords in mice. So, we aimed to test the effect of treatment with miR-139-5p on functional recovery and neuropathic pain in mice with SCI and investigate the underlying mechanism. The luciferase reporter assay revealed that miR-139-5p directly targeted mammalian sterile 20-like kinase 1 (Mst1), and miR-139-5p treatment suppressed Mst1 protein expression in damaged spinal cords of mice. Wild-type mice and Mst1(-/-) mice were exposed to SCI and treated with miR-139-5p agomir via intrathecal infusion. Treatment of SCI mice with miR-139-5p accelerated locomotor functional recovery, reduced hypersensitivities to mechanical and thermal stimulations, and promoted neuronal survival in damaged spinal cords. Treatment with miR-139-5p enhanced phosphorylation of adenosine monophosphate-activated protein kinase alpha (AMPKα), improved mitochondrial function, and suppressed NF-κB-related inflammation in damaged spinal cords. Deficiency of Mst1 had similar benefits in mice with SCI. Furthermore, miR-139-5p treatment did not provide further protection in Mst1(-/-) mice against SCI. In conclusion, miR-139-5p treatment enhanced functional recovery and reduced pain hypersensitivity in mice with SCI, possibly through targeting Mst1.