I am a
Home I AM A Search Login

Papers of the Week


Papers: 30 May 2020 - 5 Jun 2020


Pharmacology/Drug Development


2020 May 30


Mol Pharmacol

Regulators of G protein signaling in analgesia and addiction.

Authors

Sakloth F, Polizu C, Bertherat F, Zachariou V
Mol Pharmacol. 2020 May 30.
PMID: 32474445.

Abstract

Regulators of G protein signaling (RGS) are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiological processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors (GPCRs), but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways SIGNIFICANCE STATEMENT: RGS proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.