- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Neuropathic pain is characterized by sensory abnormalities, such as mechanical allodynia and heat hyperalgesia, associated with alteration in the peripheral and central nervous systems. After trigeminal nerve injury, phenotypic changes that involve the expression of calcitonin gene-related peptide occur in large- and medium-sized myelinated neurons; primary afferent neurons exhibit hyperexcitability because of neuron-glia interactions in the trigeminal ganglion. Increased nociceptive inputs from C- and Aδ-fiber and innocuous inputs from Aβ-fiber into the trigeminal spinal subnucleus caudalis (Vc) contribute to the phenotypic changes; further, they potentiate noxious information transmission in the ascending nociceptive pathways to the thalamus and parabrachial nucleus (PBN). It is noteworthy that C-fiber mediated nociceptive inputs can activate both the Vc-ventral posteromedial thalamic nucleus and Vc-PBN pathways, while mechanoreceptive fiber inputs specifically activate the Vc-PBN pathway. The Vc-PBN pathways project to the central nucleus of the amygdala (CeA) where affective behaviors are modulated. In addition, the PBN interacts with wakefulness-regulating neurons and hunger-sensitive neurons in the hypothalamus, suggesting that the Vc-PBN pathway can modulate sleep and appetite. Therefore, phenotypic changes in primary neurons and stimulus modality-specific activation of ascending nociceptive pathways to the PBN may exacerbate affective aspects of trigeminal neuropathic pain, including behavioral problems, such as sleep disturbance and anorexia, via the PBN-CeA-hypothalamus circuits.