I am a
Home I AM A Search Login

Papers of the Week

Papers: 22 Feb 2020 - 28 Feb 2020

Animal Studies, Pharmacology/Drug Development

2020 Feb 24

Pharmacol Res

Urinary bladder sigma-1 receptors: A new target for cystitis treatment.


González-Cano R, Artacho-Cordón A, Romero L, Tejada MA, Nieto FR, Merlos M, Cañizares FJ, Cendán CM, Fernández-Segura E, Baeyens JM
Pharmacol Res. 2020 Feb 24:104724.
PMID: 32105755.


No adequate treatment is available for painful urinary bladder disorders such as interstitial cystitis/bladder pain syndrome, and the identification of new urological therapeutic targets is an unmet need. The sigma-1 receptor (σ-R) modulates somatic pain, but its role in painful urological disorders is unexplored. The urothelium expresses many receptors typical of primary sensory neurons (e.g. TRPV1, TRPA1 and P2 × 3) and high levels of σ-R have been found in these neurons; we therefore hypothesized that σ-R may also be expressed in the urothelium and may have functional relevance in this tissue. With western blotting and immunohistochemical methods, we detected σ-R in the urinary bladder in wild-type (WT) but not in σ-R-knockout (σ-KO) mice. Interestingly, σ-R was located in the bladder urothelium not only in mouse, but also in human bladder sections. The severity of histopathological (edema, hemorrhage and urothelial desquamation) and biochemical alterations (enhanced myeloperoxidase activity and phosphorylation of extracellular regulated kinases 1/2 [pERK1/2]) that characterize cyclophosphamide-induced cystitis was lower in σ-KO than in WT mice. Moreover, cyclophosphamide-induced pain behaviors and referred mechanical hyperalgesia were dose-dependently reduced by σ-R antagonists (BD-1063, NE-100 and S1RA) in WT but not in σ1-KO mice. In contrast, the analgesic effect of morphine was greater in σ-KO than in WT mice. Together these findings suggest that σ-R plays a functional role in the mechanisms underlying cyclophosphamide-induced cystitis, and modulates morphine analgesia against urological pain. Therefore, σ-R may represent a new drug target for urinary bladder disorders.