I am a
Home I AM A Search Login

Papers of the Week


2020 Jan


Epilepsy Behav


102

A transcranial sonography study of brainstem and its association with depression in idiopathic generalized epilepsy with tonic-clonic seizures.

Authors

Shen J, Li D-L, Tan X-X, Tao W-W, Xie C-J, Shi X-G, Wang Y
Epilepsy Behav. 2020 Jan; 102:106589.
PMID: 31726317.

Abstract

Brainstem raphe (BR) hypoechogenicity in transcranial sonography (TCS) has been depicted in patients with depression. But, up to date, the association of BR alterations in TCS with depression in patients with epilepsy has never been reported. This study was to investigate the possible role of BR examination via TCS in patients with idiopathic generalized epilepsy with tonic-clonic seizures (IGE-TCS) and depression. Forty-six patients with IGE-TCS and 45 healthy controls were recruited. Echogenicity of the caudate nuclei (CN), lentiform nuclei (LN), substantia nigra (SN), and BR and widths of the lateral ventricle (LV) frontal horns and the third ventricle (TV) were assessed via TCS. The determination of depression was based on the criteria of the Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV), and depression severity measured by Chinese version Neurological Disorders Depression Inventory for Epilepsy (C-NDDI-E) and Beck Depression Inventory-II (BDI-II). The width of TV in patients with epilepsy was found significantly larger than that in healthy controls (p = 0.001), but there was no significant difference in TV width between patients with IGE-TCS with and without depression. There were no significant differences between patients with IGE-TCS and healthy controls in LV frontal horn width, as well as in SN, CN, LN, and BR echogenicity. Here, it seems that patients with IGE-TCS were detected with smaller SN echogenic area compared with controls though they had no statistical significance. Patients with IGE-TCS with hypoechogenic BR had significantly higher C-NDDI-E and BDI-II scores than those with normal BR signal, and most patients with IGE-TCS with depression exhibited hypoechogenic BR, but few patients with IGE-TCS without depression exhibited hypoechogenic BR. In conclusion, BR echogenic signal alterations in TCS can be a biomarker for depression in epilepsy, but it might not be associated with epilepsy itself. The alterations of SN echogenic area and TV width in TCS may reflect a potential role of SN and diencephalon structure in the pathogenesis of epilepsy, which needs to be further elucidated.