- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Nerve injury leads to devastating and often untreatable neuropathic pain. While acute noxious sensation (nociception) is a crucial survival mechanism and is conserved across phyla, chronic neuropathic pain is considered a maladaptive response owing to its devastating impact on a patient's quality of life. We have recently shown that a neuropathic pain-like response occurs in adult . However, the mechanisms underlying this phenomenon are largely unknown. Previous studies have shown that the α2δ peripheral calcium channel subunit () is a conserved factor required for thermal pain perception. We demonstrate here that is required in peripheral sensory neurons for acute thermal responses and that it mediates nociceptive hypersensitivity in an adult model of neuropathic pain-like disease. Given that calcium channels are the main targets of gabapentinoids (pregabalin and gabapentin), we assessed if these drugs can alleviate nociceptive hypersensitivity. Our findings suggest that gabapentinoids may prevent nociceptive hypersensitivity by preserving central inhibition after nerve injury. Together, our data further highlight the similarity of some mechanisms for pain-like conditions across and validates the scientific use of neuropathic sensitization models for analgesic drug discovery. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.