I am a
Home I AM A Search Login

Papers of the Week


Papers: 4 May 2019 - 10 May 2019


Animal Studies


2019 Jun 25


Biochem Biophys Res Commun


514


2

FBXW5 reduction alleviates spinal cord injury (SCI) by blocking microglia activity: A mechanism involving p38 and JNK.

Authors

Zhao P, Chao W, Li W
Biochem Biophys Res Commun. 2019 Jun 25; 514(2):558-564.
PMID: 31060780.

Abstract

Traumatic spinal cord injury (SCI) is a major cause of death and lifelong disability in the world. However, the pathological process of SCI has not been fully understood. F-box/WD repeat-containing protein 5 (FBXW5), a subunit of the SCF-type E3 ubiquitin ligase complex, plays an essential role in regulating various pathologies. However, little is known about the effects of FBXW5 on the progression of SCI. In this study, using a rodent model with SCI, we found that FBXW5 expression was markedly down-regulated in spinal dorsal horn of rats after SCI surgery. Rats with FBXW5 knockdown showed the improved paw withdrawal latency responding to thermal stimuli on the ipsilateral side while showed no significant influence on the basal threshold on the contralateral side. In addition, SCI-induced increase of pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6, was obviously decreased by FBXW5 knockdown, along with microglia inactivation as evidenced by the reduced expression of Iba-1. Moreover, immunofluorescent staining suggested that FBXW5 was co-localized with Iba-1 in spinal cord tissues of SCI rats. Furthermore, p38, Jun kinase (JNK) and extracellular signal-regulated kinase (ERK)-1/2 activation was significantly increased by SCI in spinal dosal horn of rats. Notably, FBXW5 knockdown markedly reduced the expression of phosphorylated p38 and JNK without affecting ERK1/2 activity in SCI rats. What's more, suppressing p38 and JNK activation significantly alleviated SCI-induced abnormal behavior in rats, along with reduced expression of pro-inflammatory cytokines. Taken together, these results provided evidence that down-regulation of FBXW5 was involved in the prevention of SCI.