I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Short- and Long-Term Effects of Cannabis on Headache and Migraine.

Use of cannabis to alleviate headache and migraine is relatively common, yet research on its effectiveness remains sparse. We sought to determine whether inhalation of cannabis decreases headache and migraine ratings as well as whether gender, type of cannabis (concentrate vs. flower), THC, CBD, or dose contribute to changes in these ratings. Finally, we explored evidence for tolerance to these effects. Archival data were obtained from Strainprint, a medical cannabis app that allows patients to track symptoms before and after using different strains and doses of cannabis. Latent change score models and multilevel models were used to analyze data from 12,293 sessions where cannabis was used to treat headache and 7,441 sessions where cannabis was used to treat migraine. There were significant reductions in headache and migraine ratings after cannabis use. Men reported larger reductions in headache than women and use of concentrates was associated with larger reductions in headache than flower. Further, there was evidence of tolerance to these effects. Perspective: Inhaled cannabis reduces self-reported headache and migraine severity by approximately 50%. However, its effectiveness appears to diminish across time and patients appear to use larger doses across time, suggesting tolerance to these effects may develop with continued use.

Learn More >

Calcitonin Gene-Related Peptide Antagonists for the Prevention of Migraine: Highlights From Pivotal Studies and the Clinical Relevance of This New Drug Class.

To review the new drug class of calcitonin gene-related peptide antagonists (monoclonal antibodies) and their clinical relevance in migraine prophylaxis. A literature search was performed in PubMed (January 2009 to November 2019) using the terms (CGRP), , and for clinical trials and studies. Reports from human studies in English were evaluated for clinical evidence supporting pharmacology, efficacy, and adverse events. Initial pharmacokinetic and preclinical studies were excluded. In chronic and episodic migraine, prophylaxis with injections of monoclonal antibodies antagonizing CGRP reduced monthly migraine days with minimal clinically significant adverse events. In addition, there is evidence supporting efficacy in refractory migraine despite optimal prophylaxis. This is the first target-specific migraine prophylaxis treatment to show efficacy with minimal adverse effects. A higher drug cost is a barrier but is balanced by improved quality of life. Current therapies have limited efficacy and tolerability because of poor side effect profiles. CGRP antagonists represent a shift to more precise migraine treatments. Monoclonal antibodies inhibiting CGRP are effective in migraine prophylaxis with minimal adverse effects. Targeting CGRP is a novel clinical strategy in managing migraine.

Learn More >

GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents.

Treating neuropathic pain is challenging and novel non-opioid based medicines are needed. Using unbiased receptomics, transcriptomic analyses, immunofluorescence and in situ hybridization, we found the expression of the orphan GPCR (oGPCR) Gpr160 and GPR160 increased in the rodent dorsal horn of the spinal cord (DH-SC) following traumatic nerve injury. Genetic and immunopharmacological approaches demonstrated that GPR160 inhibition in the spinal cord prevented and reversed neuropathic pain in male and female rodents without altering normal pain response. GPR160 inhibition in the spinal cord attenuated sensory processing in the thalamus, a key relay in the sensory discriminative pathways of pain. We also identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a GPR160 ligand. Inhibiting endogenous CARTp signaling in spinal cord attenuated neuropathic pain, whereas exogenous intrathecal (i.th.) CARTp evoked painful hypersensitivity through GPR160-dependent ERK and cAMP response element-binding protein (CREB). Our findings de-orphanize GPR160, identify it as a determinant of neuropathic pain and potential therapeutic target, and provide insights to its signaling pathways. CARTp is involved in many diseases including depression, reward and addiction, de-orphanization of GPR160 is a major step forward understanding the role of CARTp signaling in health and disease.

Learn More >

Investigating the Effect of Perioperative Chlorzoxazone On Acute Postoperative Pain After Total Hip and Knee Replacement Surgery.

Severe pre- and acute postoperative pain have been associated with development of chronic postoperative pain. Chlorzoxazone (a muscle relaxant) has been suggested to enhance acute postoperative pain recovery but the lack of larger randomized controlled trials have however questioned the continued use. Despite this, chlorzoxazone is still used for acute postoperative pain management following total knee or hip replacement (TKR or THR). The currentrandomized, double blinded, placebo-controlled, parallel group, clinical trial aimed to assess the effect of chlorzoxazone for postoperative pain management following TKR or THR.

Learn More >

The Risks or Lack Thereof of Migraine Treatments in Vascular Disease.

Patients with migraine have a co-morbidity with vascular diseases such as hypertension, coronary heart disease, and stroke.

Learn More >

Issues Impacting Adverse Event Frequency and Severity: Differences Between Randomized Phase 2 and Phase 3 Clinical Trials for Lasmiditan.

We explore factors that may have contributed to differences in treatment-emergent adverse events in the phase 2 and phase 3 lasmiditan clinical trials.

Learn More >

Long-Term Safety Evaluation of Ubrogepant for the Acute Treatment of Migraine: Phase 3, Randomized, 52-Week Extension Trial.

To evaluate the long-term safety and tolerability of ubrogepant for the acute treatment of migraine.

Learn More >

Dominant Role of the Gut Microbiota in Chemotherapy Induced Neuropathic Pain.

Chemotherapy induced peripheral neuropathy (CIPN), a toxic side effect of some cancer treatments, negatively impacts patient outcomes and drastically reduces survivor's quality of life (QOL). Uncovering the mechanisms driving chemotherapy-induced CIPN is urgently needed to facilitate the development of effective treatments, as currently there are none. Observing that C57BL/6 (B6) and 129SvEv (129) mice are respectively sensitive and resistant to Paclitaxel-induced pain, we investigated the involvement of the gut microbiota in this extreme phenotypic response. Reciprocal gut microbiota transfers between B6 and 129 mice as well as antibiotic depletion causally linked gut microbes to Paclitaxel-induced pain sensitivity and resistance. Microglia proliferated in the spinal cords of Paclitaxel treated mice harboring the pain-sensitive B6 microbiota but not the pain-resistant 129 microbiota, which exhibited a notable absence of infiltrating immune cells. Paclitaxel decreased the abundance of Akkermansia muciniphila, which could compromise barrier integrity resulting in systemic exposure to bacterial metabolites and products – that acting via the gut-immune-brain axis – could result in altered brain function. Other bacterial taxa that consistently associated with both bacteria and pain as well as microglia and pain were identified, lending support to our hypothesis that microglia are causally involved in CIPN, and that gut bacteria are drivers of this phenotype.

Learn More >

Structure-based discovery of nonopioid analgesics acting through the α-adrenergic receptor.

Because nonopioid analgesics are much sought after, we computationally docked more than 301 million virtual molecules against a validated pain target, the α-adrenergic receptor (αAR), seeking new αAR agonists chemotypes that lack the sedation conferred by known αAR drugs, such as dexmedetomidine. We identified 17 ligands with potencies as low as 12 nanomolar, many with partial agonism and preferential G and G signaling. Experimental structures of αAR complexed with two of these agonists confirmed the docking predictions and templated further optimization. Several compounds, including the initial docking hit '9087 [mean effective concentration (EC) of 52 nanomolar] and two analogs, '7075 and PS75 (EC 4.1 and 4.8 nanomolar), exerted on-target analgesic activity in multiple in vivo pain models without sedation. These newly discovered agonists are interesting as therapeutic leads that lack the liabilities of opioids and the sedation of dexmedetomidine.

Learn More >

Neural Functions of Hypothalamic Oxytocin and its Regulation.

Oxytocin (OT), a nonapeptide, has a variety of functions. Despite extensive studies on OT over past decades, our understanding of its neural functions and their regulation remains incomplete. OT is mainly produced in OT neurons in the supraoptic nucleus (SON), paraventricular nucleus (PVN) and accessory nuclei between the SON and PVN. OT exerts neuromodulatory effects in the brain and spinal cord. While magnocellular OT neurons in the SON and PVN mainly innervate the pituitary and forebrain regions, and parvocellular OT neurons in the PVN innervate brainstem and spinal cord, the two sets of OT neurons have close interactions histologically and functionally. OT expression occurs at early life to promote mental and physical development, while its subsequent decrease in expression in later life stage accompanies aging and diseases. Adaptive changes in this OT system, however, take place under different conditions and upon the maturation of OT release machinery. OT can modulate social recognition and behaviors, learning and memory, emotion, reward, and other higher brain functions. OT also regulates eating and drinking, sleep and wakefulness, nociception and analgesia, sexual behavior, parturition, lactation and other instinctive behaviors. OT regulates the autonomic nervous system, and somatic and specialized senses. Notably, OT can have different modulatory effects on the same function under different conditions. Such divergence may derive from different neural connections, OT receptor gene dimorphism and methylation, and complex interactions with other hormones. In this review, brain functions of OT and their underlying neural mechanisms as well as the perspectives of their clinical usage are presented.

Learn More >

Search