I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Fremanezumab and its isotype slow propagation rate and shorten cortical recovery period but do not prevent occurrence of cortical spreading depression in rats with compromised blood brain barrier.

Most centrally-acting migraine preventive drugs suppress frequency and velocity of cortical spreading depression (CSD). The purpose of the current study was to determine how the new class of peripherally acting migraine preventive drug (i.e., the anti-CGRP-mAbs) affect CSD – an established animal model of migraine aura, which affects about 1/3 of people with migraine – when allowed to cross the blood brain barrier (BBB). Using standard electrocorticogram recording techniques and rats in which the BBB was intentionally compromised, we found that when the BBB was opened, the anti-CGRP-mAb fremanezumab did not prevent the induction, occurrence or propagation of a single wave of CSD induced by a pinprick, but that both fremanezumab and its isotype were capable of slowing down the propagation velocity of CSD and shortening the period of profound depression of spontaneous cortical activity that followed the spreading depolarization. Fremanezumab's inability to completely block the occurrence of CSD in animals in which the BBB was compromised suggests that CGRP may not be involved in the initiation of CSD, at least not to the extent that it can prevent its occurrence. Similarly, we cannot conclude that CGRP is involved in the propagation velocity or the neuronal silencing period (also called cortical recovery period) that follows the CSD because similar effects were observed when the isotype was used. These finding call for caution with interpretations of studies that claim to show direct CNS effects of anti-CGRP-mAbs.

Learn More >

Agmatine requires GluN2B-containing NMDA receptors to inhibit the development of neuropathic pain.

A decarboxylated form of L-arginine, agmatine, preferentially antagonizes NMDArs containing Glun2B subunits within the spinal cord and lacks motor side effects commonly associated with non-subunit-selective NMDAr antagonism, namely sedation and motor impairment. Spinally delivered agmatine has been previously shown to reduce the development of tactile hypersensitivity arising from spinal nerve ligation. The present study interrogated the dependence of agmatine's alleviation of neuropathic pain (spared nerve injury (SNI) model) on GluN2B-containing NMDArs. SNI-induced hypersensitivity was induced in mice with significant reduction of levels of spinal GluN2B subunit of the NMDAr and their floxed controls. Agmatine reduced development of SNI-induced tactile hypersensitivity in controls but had no effect in subjects with reduced levels of GluN2B subunits. Ifenprodil, a known GluN2B-subunit-selective antagonist, similarly reduced tactile hypersensitivity in controls but not in the GluN2B-deficient mice. In contrast, MK-801, an NMDA receptor channel blocker, reduced hypersensitivity in both control and GluN2B-deficient mice, consistent with a pharmacological pattern expected from a NMDAr antagonist that does not have preference for GluN2B subtypes. Additionally, we observed that spinally delivered agmatine, ifenprodil and MK-801 inhibited nociceptive behaviors following intrathecal delivery of NMDA in control mice. By contrast, in GluN2B-deficient mice, MK-801 reduced NMDA-evoked nociceptive behaviors, but agmatine had a blunted effect and ifenprodil had no effect. These results demonstrate that agmatine requires the GluN2B subunit of the NMDA receptor for inhibitory pharmacological actions in pre-clinical models of NMDA receptor-dependent hypersensitivity.

Learn More >

Purification and Characterization of the Pink-Floyd Drillipeptide, a Bioactive Venom Peptide from (Gastropoda: Conoidea: Drilliidae).

The cone snails (family Conidae) are the best known and most intensively studied venomous marine gastropods. However, of the total biodiversity of venomous marine mollusks (superfamily Conoidea, >20,000 species), cone snails comprise a minor fraction. The venoms of the family Drilliidae, a highly diversified family in Conoidea, have not previously been investigated. In this report, we provide the first biochemical characterization of a component in a Drilliidae venom and define a gene superfamily of venom peptides. A bioactive peptide, cdg14a, was purified from the venom of Fedosov and Puillandre, 2020. The peptide is small (23 amino acids), disulfide-rich (4 cysteine residues) and belongs to the J-like drillipeptide gene superfamily. Other members of this superfamily share a conserved signal sequence and the same arrangement of cysteine residues in their predicted mature peptide sequences. The cdg14a peptide was chemically synthesized in its bioactive form. It elicited scratching and hyperactivity, followed by a paw-thumping phenotype in mice. Using the Constellation Pharmacology platform, the cdg14a drillipeptide was shown to cause increased excitability in a majority of non-peptidergic nociceptors, but did not affect other subclasses of dorsal root ganglion (DRG) neurons. This suggests that the cdg14a drillipeptide may be blocking a specific molecular isoform of potassium channels. The potency and selectivity of this biochemically characterized drillipeptide suggest that the venoms of the Drilliidae are a rich source of novel and selective ligands for ion channels and other important signaling molecules in the nervous system.

Learn More >

Association of Tramadol With All-Cause Mortality Among Patients With Osteoarthritis.

An American Academy of Orthopaedic Surgeons guideline recommends tramadol for patients with knee osteoarthritis, and an American College of Rheumatology guideline conditionally recommends tramadol as first-line therapy for patients with knee osteoarthritis, along with nonsteroidal anti-inflammatory drugs.

Learn More >

Effect of catechol-O-methyltransferase (rs4680) single nucleotide polymorphism on opioid induced hyperalgesia in adults with chronic pain.

Learn More >

Designing and conducting proof-of-concept chronic pain analgesic clinical trials.

Learn More >

Skilled reaching deterioration contralateral to cervical hemicontusion in rats is reversed by pregabalin treatment conditional upon its early administration.

Learn More >

Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists.

Selective activation of the δ-opioid receptor (DOP) has great potential for the treatment of chronic pain, benefitting from ancillary anxiolytic and antidepressant-like effects. Moreover, DOP agonists show reduced adverse effects as compared to μ-opioid receptor (MOP) agonists that are in the spotlight of the current "opioid crisis." Here, we report the first crystal structures of the DOP in an activated state, in complex with two relevant and structurally diverse agonists: the potent opioid agonist peptide KGCHM07 and the small-molecule agonist DPI-287 at 2.8 and 3.3 Å resolution, respectively. Our study identifies key determinants for agonist recognition, receptor activation, and DOP selectivity, revealing crucial differences between both agonist scaffolds. Our findings provide the first investigation into atomic-scale agonist binding at the DOP, supported by site-directed mutagenesis and pharmacological characterization. These structures will underpin the future structure-based development of DOP agonists for an improved pain treatment with fewer adverse effects.

Learn More >

Short- and Long-Term Effects of Cannabis on Headache and Migraine.

Use of cannabis to alleviate headache and migraine is relatively common, yet research on its effectiveness remains sparse. We sought to determine whether inhalation of cannabis decreases headache and migraine ratings as well as whether gender, type of cannabis (concentrate vs. flower), THC, CBD, or dose contribute to changes in these ratings. Finally, we explored evidence for tolerance to these effects. Archival data were obtained from Strainprint, a medical cannabis app that allows patients to track symptoms before and after using different strains and doses of cannabis. Latent change score models and multilevel models were used to analyze data from 12,293 sessions where cannabis was used to treat headache and 7,441 sessions where cannabis was used to treat migraine. There were significant reductions in headache and migraine ratings after cannabis use. Men reported larger reductions in headache than women and use of concentrates was associated with larger reductions in headache than flower. Further, there was evidence of tolerance to these effects. Perspective: Inhaled cannabis reduces self-reported headache and migraine severity by approximately 50%. However, its effectiveness appears to diminish across time and patients appear to use larger doses across time, suggesting tolerance to these effects may develop with continued use.

Learn More >

Calcitonin Gene-Related Peptide Antagonists for the Prevention of Migraine: Highlights From Pivotal Studies and the Clinical Relevance of This New Drug Class.

To review the new drug class of calcitonin gene-related peptide antagonists (monoclonal antibodies) and their clinical relevance in migraine prophylaxis. A literature search was performed in PubMed (January 2009 to November 2019) using the terms (CGRP), , and for clinical trials and studies. Reports from human studies in English were evaluated for clinical evidence supporting pharmacology, efficacy, and adverse events. Initial pharmacokinetic and preclinical studies were excluded. In chronic and episodic migraine, prophylaxis with injections of monoclonal antibodies antagonizing CGRP reduced monthly migraine days with minimal clinically significant adverse events. In addition, there is evidence supporting efficacy in refractory migraine despite optimal prophylaxis. This is the first target-specific migraine prophylaxis treatment to show efficacy with minimal adverse effects. A higher drug cost is a barrier but is balanced by improved quality of life. Current therapies have limited efficacy and tolerability because of poor side effect profiles. CGRP antagonists represent a shift to more precise migraine treatments. Monoclonal antibodies inhibiting CGRP are effective in migraine prophylaxis with minimal adverse effects. Targeting CGRP is a novel clinical strategy in managing migraine.

Learn More >

Search