I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Minocycline Prevents the Development of Mechanical Allodynia in Mouse Models of Vincristine-Induced Peripheral Neuropathy.

Vincristine is an antineoplastic substance that is part of many chemotherapy regimens, used especially for the treatment of a variety of pediatric cancers including leukemias and brain tumors. Unfortunately, many vincristine-treated patients develop peripheral neuropathy, a side effect characterized by sensory, motoric, and autonomic symptoms. The sensory symptoms include pain, in particular hypersensitivity to light touch, as well as loss of sensory discrimination to detect vibration and touch. The symptoms of vincristine-induced neuropathy are only poorly controlled by currently available analgesics and therefore often necessitate dose reductions or even cessation of treatment. The aim of this study was to identify new therapeutic targets for the treatment of vincristine-induced peripheral neuropathy (VIPN) by combining behavioral experiments, histology, and pharmacology after vincristine treatment. Local intraplantar injection of vincristine into the hind paw caused dose- and time-dependent mechanical hypersensitivity that developed into mechanical hyposensitivity at high doses, and lead to a pronounced, dose-dependent infiltration of immune cells at the site of injection. Importantly, administration of minocycline effectively prevented the development of mechanical hypersensitivity and infiltration of immune cells in mouse models of vincristine induce peripheral neuropathy (VIPN) based on intraperitoneal or intraplantar administration of vincristine. Similarly, Toll-like receptor 4 knockout mice showed diminished vincristine-induced mechanical hypersensitivity and immune cell infiltration, while treatment with the anti-inflammatory meloxicam had no effect. These results provide evidence for the involvement of Toll-like receptor 4 in the development of VIPN and suggest that minocycline and/or direct Toll-like receptor 4 antagonists may be an effective preventative treatment for patients receiving vincristine.

Learn More >

Intranasal lidocaine for acute migraine: A meta-analysis of randomized controlled trials.

Intranasal lidocaine has been shown to be effective in treating patients with acute migraines; however, its efficacy is still controversial. In this study, we intend to assess the efficacy and safety of intranasal lidocaine compared with a placebo or an active comparator for the treatment of migraines.

Learn More >

Granulocyte-Colony Stimulating Factor-Induced Neutrophil Recruitment Provides Opioid-Mediated Endogenous Anti-nociception in Female Mice With Oral Squamous Cell Carcinoma.

Oral cancer patients report severe function-induced pain; severity is greater in females. We hypothesize that a neutrophil-mediated endogenous analgesic mechanism is responsible for sex differences in nociception secondary to oral squamous cell carcinoma (SCC). Neutrophils isolated from the cancer-induced inflammatory microenvironment contain β-endorphin protein and are identified by the Ly6G immune marker. We previously demonstrated that male mice with carcinogen-induced oral SCC exhibit less nociceptive behavior and a higher concentration of neutrophils in the cancer microenvironment compared to female mice with oral SCC. Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), a growth factor that recruits neutrophils from bone marrow to the cancer microenvironment. We found that recombinant G-CSF (rG-CSF, 5 μg/mouse, intraperitoneal) significantly increased circulating Ly6G neutrophils in the blood of male and female mice within 24 h of administration. In an oral cancer supernatant mouse model, rG-CSF treatment increased cancer-recruited Ly6G neutrophil infiltration and abolished orofacial nociceptive behavior evoked in response to oral cancer supernatant in both male and female mice. Local naloxone treatment restored the cancer mediator-induced nociceptive behavior. We infer that rG-CSF-induced Ly6G neutrophils drive an endogenous analgesic mechanism. We then evaluated the efficacy of chronic rG-CSF administration to attenuate oral cancer-induced nociception using a tongue xenograft cancer model with the HSC-3 human oral cancer cell line. Saline-treated male mice with HSC-3 tumors exhibited less oral cancer-induced nociceptive behavior and had more β-endorphin protein in the cancer microenvironment than saline-treated female mice with HSC-3 tumors. Chronic rG-CSF treatment (2.5 μg/mouse, every 72 h) increased the HSC-3 recruited Ly6G neutrophils, increased β-endorphin protein content in the tongue and attenuated nociceptive behavior in female mice with HSC-3 tumors. From these data, we conclude that neutrophil-mediated endogenous opioids warrant further investigation as a potential strategy for oral cancer pain treatment.

Learn More >

Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α pathway.

Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) is one of the essential signaling pathways for the development and maintenance of neuropathic pain.

Learn More >

The effect of guideline implementation on discharge analgesia prescribing (two years on).

The provision of appropriate discharge analgesia can be challenging and is often prescribed by some of the most junior members of the medical team. Opioid abuse has been considered a growing public health crisis and physician overprescribing is a major contributor. In 2015 an initial audit of discharge analgesia at the Royal Perth Hospital led to the development of discharge analgesia guidelines. Compliance with these guidelines was assessed by a follow-up audit in 2016, which showed improved practice. This audit assesses discharge analgesia prescribing practices two years following guideline implementation. Dispensing data were obtained for analgesic medication over a three-month period from April to July 2017 and 100 unique patients were chosen using computer generated randomisation. Patients' medical records were assessed against the hospital's Postoperative Inpatients Discharge Analgesia Guidelines. The data collected were then compared with equivalent data from the previous 2015 and 2016 audits. Overall 83.4% of the 170 discharge analgesia prescriptions written were compliant with guidelines. The highest overall compliance rates were achieved for paracetamol (100%, up from 95.9% in 2016), celecoxib (96%, down from 100% in 2016), and oxycodone immediate release (IR) (74%, down from 88.9% in 2016). The quantity of oxycodone IR given on discharge complied with quantity guidelines in only 56% of cases. Overall there has been a significant and sustained improvement in appropriateness of discharge analgesia prescribing since 2015, though the results from 2017 show less compliance than 2016 and that achieving compliance with quantity guidelines is an ongoing challenge. This demonstrates the challenge of obtaining high adherence to guidelines over a longer time period.

Learn More >

Role of Metabotropic Glutamate Receptors in Neurological Disorders.

Glutamate is a fundamental excitatory neurotransmitter in the mammalian central nervous system (CNS), playing key roles in memory, neuronal development, and synaptic plasticity. Moreover, excessive glutamate release has been implicated in neuronal cell death. There are both ionotropic and metabotropic glutamate receptors (mGluRs), the latter of which can be divided into eight subtypes and three subgroups based on homology sequence and their effects on cell signaling. Indeed, mGluRs exert fine control over glutamate activity by stimulating several cell-signaling pathways the activation of G protein-coupled (GPC) or G protein-independent cell signaling. The involvement of specific mGluRs in different forms of synaptic plasticity suggests that modulation of mGluRs may aid in the treatment of cognitive impairments related to several neurodevelopmental/psychiatric disorders and neurodegenerative diseases, which are associated with a high economic and social burden. Preclinical and clinical data have shown that, in the CNS, mGluRs are able to modulate presynaptic neurotransmission by fine-tuning neuronal firing and neurotransmitter release in a dynamic, activity-dependent manner. Current studies on drugs that target mGluRs have identified promising, innovative pharmacological tools for the treatment of neurodegenerative and neuropsychiatric conditions, including chronic pain.

Learn More >

Efficacy and safety of controlled-release oxycodone for the management of moderate-to-severe chronic low back pain in Japan: results of an enriched enrollment randomized withdrawal study followed by an open-label extension study.

Oxycodone is one of the options for the management of CLBP in patients with an inadequate response to other analgesics. However, oxycodone is not yet approved for noncancer pain in Japan. Here, we assessed the efficacy and long-term safety of S-8117, a controlled-release oxycodone formulation, for the management of Japanese CLBP patients.

Learn More >

Nitroglycerine triggers triptan-responsive cranial allodynia and trigeminal neuronal hypersensitivity.

Cranial allodynia associated with spontaneous migraine is reported as either responsive to triptan treatment or to be predictive of lack of triptan efficacy. These conflicting results suggest that a single mechanism mediating the underlying neurophysiology of migraine symptoms is unlikely. The lack of a translational approach to study cranial allodynia reported in migraine patients is a limitation in dissecting potential mechanisms. Our objective was to study triptan-responsive cranial allodynia in migraine patients, and to develop an approach to studying its neural basis in the laboratory. Using nitroglycerine to trigger migraine attacks, we investigated whether cranial allodynia could be triggered experimentally, observing its response to treatment. Preclinically, we examined the cephalic response properties of central trigeminocervical neurons using extracellular recording techniques, determining changes to ongoing firing and somatosensory cranial-evoked sensitivity, in response to nitroglycerine followed by triptan treatment. Cranial allodynia was triggered alongside migraine-like headache in nearly half of subjects. Those who reported cranial allodynia accompanying their spontaneous migraine attacks were significantly more likely to have symptoms triggered than those that did not. Patients responded to treatment with aspirin or sumatriptan. Preclinically, nitroglycerine caused an increase in ongoing firing and hypersensitivity to intracranial-dural and extracranial-cutaneous (noxious and innocuous) somatosensory stimulation, reflecting signatures of central sensitization potentially mediating throbbing headache and cranial allodynia. These responses were aborted by a triptan. These data suggest that nitroglycerine can be used as an effective and reliable method to trigger cranial allodynia in subjects during evoked migraine, and the symptom is responsive to abortive triptan treatments. Preclinically, nitroglycerine activates the underlying neural mechanism of cephalic migraine symptoms, central sensitization, also predicting the clinical outcome to triptans. This supports a biological rationale that several mechanisms can mediate the underlying neurophysiology of migraine symptoms, with nitrergic-induced changes reflecting one that is relevant to spontaneous migraine in many migraineurs, whose symptoms of cranial allodynia are responsive to triptan treatment. This approach translates directly to responses in animals and is therefore a relevant platform to study migraine pathophysiology, and for use in migraine drug discovery.

Learn More >

Partners in crime: NGF and BDNF in visceral dysfunction.

Neurotrophins (NTs), particularly Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF), have attracted increasing attention in the context of visceral function for some years. Here, we examined current literature and produced a thorough review on the subject. After initial studies linking NGF to cystitis, it is now well-established that this neurotrophin (NT) is a key modulator of bladder pathologies, including Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) and Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS. NGF is upregulated in bladder tissue and its blockade results in major improvements on urodynamic parameters and pain. Further studies expanded showed that NGF is also an intervenient in other visceral dysfunctions such as endometriosis and Irritable Bowel Syndrome (IBS). More recently, BDNF was also shown to play an important role in the same visceral dysfunctions, suggesting that both NTs are determinant factors in visceral pathophysiological mechanisms. While manipulation of NGF and BDNF improves visceral function and reduce pain, suggesting that clinical modulation of these NTs may be important, much is still to be investigated before this step is taken. Another active area of research is centred on urinary NGF and BDNF. Several studies show that both NTs can be found in the urine of patients with visceral dysfunction in much higher concentration than in healthy individuals, suggesting they could be used as potential biomarkers. However, there are still technical difficulties to be overcome, including the lack of a large multicentre placebo controlled studies to prove the relevance of urinary NTs as clinical biomarkers.

Learn More >

Comprehensive molecular pharmacology screening reveals potential new receptor interactions for clinically relevant opioids.

Most clinically used opioids are thought to induce analgesia through activation of the mu opioid receptor (MOR). However, disparities have been observed between the efficacy of opioids in activating the MOR in vitro and in inducing analgesia in vivo. In addition, some clinically used opioids do not produce cross-tolerance with each other, and desensitization produced in vitro does not match tolerance produced in vivo. These disparities suggest that some opioids could be acting through other targets in vivo, but this has not been comprehensively tested. We thus screened 9 clinically relevant opioids (buprenorphine, hydrocodone, hydromorphone, morphine, O-desmethyl-tramadol, oxycodone, oxymorphone, tapentadol, tramadol) against 9 pain-related receptor targets (MOR, delta opioid receptor [DOR], kappa opioid receptor [KOR], nociceptin receptor [NOP], cannabinoid receptor type 1 [CB1], sigma-1 receptor [σ1R], and the monoamine transporters [NET/SERT/DAT]) expressed in cells using radioligand binding and functional activity assays. We found several novel interactions, including monoamine transporter activation by buprenorphine and σ1R binding by hydrocodone and tapentadol. Tail flick anti-nociception experiments with CD-1 mice demonstrated that the monoamine transporter inhibitor duloxetine selectively promoted buprenorphine anti-nociception while producing no effects by itself or in combination with the most MOR-selective drug oxymorphone, providing evidence that these novel interactions could be relevant in vivo. Our findings provide a comprehensive picture of the receptor interaction profiles of clinically relevant opioids, which has not previously been performed. Our findings also suggest novel receptor interactions for future investigation that could explain some of the disparities observed between opioid performance in vitro and in vivo.

Learn More >

Search