I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Nociceptor Signalling through ion Channel Regulation via GPCRs.

The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.

Learn More >

The need for new acutely acting antimigraine drugs: moving safely outside acute medication overuse.

The treatment of migraine is impeded by several difficulties, among which insufficient headache relief, side effects, and risk for developing medication overuse headache (MOH). Thus, new acutely acting antimigraine drugs are currently being developed, among which the small molecule CGRP receptor antagonists, gepants, and the 5-HT receptor agonist lasmiditan. Whether treatment with these drugs carries the same risk for developing MOH is currently unknown.

Learn More >

The roles of chemokine CXCL13 in the development of bone cancer pain and the regulation of morphine analgesia in rats.

Chemokines are important regulators of immune, inflammatory, and neuronal responses in peripheral and central pain pathway. The aim of this study was to investigate whether chemokine (C-X-C motif) ligand 13 (CXCL13) and its receptor (C-X-C chemokine receptor type 5, CXCR5) involve in the development of bone cancer pain (BCP) and the regulation of morphine analgesia in rats. The change of pain behaviors in BCP rats were measured by testing paw withdrawal threshold (PWT). The levels of CXCL13, CXCR5 and signal pathway proteins (p-p38, p-ERK and p-AKT etc) in the spinal cord were measured via western blots. The expression of CXCL13 and CXCR5 in spinal cord were increased in BCP rats. The BCP rats showed decrease of PWTs, which was relieved by CXCR5i. Intrathecally injection of murine recombinant CXCL13 (mrCXCL13) decreased the PWTs of BCP rats and opposed morphine-induced analgesia in BCP rats. In BCP rats, the signal pathway proteins (p38, ERK and AKT) in the spinal cord were activated. CXCL13 and morphine had contrary effect on the phosphorylation of these proteins. MrCXCL13 directly increased the levels of p-p38, p-ERK and p-AKT in BCP rats. However, morphine decreased the levels of these proteins in BCP rats. While blocking the activation of p-p38, p-ERK and p-AKT, morphine analgesia was enhanced. These results suggest CXCL13 participated in bone cancer pain and opposed morphine analgesia via p38, ERK and AKT pathways. It may be a target to enhance pain management in cancer pain patients.

Learn More >

Structural hybridization of pyrrolidine-based T-type calcium channel inhibitors and exploration of their analgesic effects in a neuropathic pain model.

Highly effective and safe drugs for the treatment of neuropathic pain are urgently required and it was shown that blocking T-type calcium channels can be a promising strategy for drug development for neuropathic pain. We have developed pyrrolidine-based T-type calcium channel inhibitors by structural hybridization and subsequent assessment of in vitro activities against Ca3.1 and Ca3.2 channels. Profiling of in vitro ADME properties of compounds was also carried out. The representative compound 17h showed comparable in vivo efficacy to gabapentin in the SNL model, which indicates T-type calcium channel inhibitors can be developed as effective therapeutics for neuropathic pain.

Learn More >

Fluorinated indole-imidazole conjugates: Selective orally bioavailable 5-HT receptor low-basicity agonists, potential neuropathic painkillers.

The 5-HT receptor has recently gained much attention due to its involvement in multiple physiological functions and diseases. The insufficient quality of the available molecular probes prompted design of fluorinated 3-(1-alkyl-1H-imidazol-5-yl)-1H-indoles as a new generation of selective 5-HT receptor agonists. A potent and drug-like agonist, 3-(1-ethyl-1H-imidazol-5-yl)-5-iodo-4-fluoro-1H-indole (AGH-192, 35, K = 4 nM), was identified by optimizing the halogen bond formation with Ser5.42 as the supposed partner. The compound was characterized by excellent water solubility, high selectivity over related CNS targets, high metabolic stability, oral bioavailability and low cytotoxicity. Rapid absorption into the blood, medium half-life and a high peak concentration in the brain C = 1069 ng/g were found after i.p. (2.5 mg/kg) administration in mice. AGH-192 may thus serve as the long-sought tool compound in the study of 5-HT receptor function, as well as a potential analgesic, indicated by the antinociceptive effect observed in a mouse model of neuropathic pain.

Learn More >

Cannabinoids-induced peripheral analgesia depends on activation of BK channels.

The endogenous cannabinoid system is involved in the physiological inhibitory control of pain and is of particular interest for the development of therapeutic approaches for pain management. Selective activation of the peripheral CB1 cannabinoid receptor has been shown to suppress the heightened firing of primary afferents, which is the peripheral mechanism underlying neuropathic pain after nerve injury. However, the mechanism underlying this effect of CB1 receptor remains unclear. The large-conductance calcium-activated potassium (BK) channels have been reported to participate in anticonvulsant and vasorelaxant effects of cannabinoids. We asked whether BK channels participate in cannabinoids-induced analgesia and firing-suppressing effects in primary afferents after nerve injury. Here, using mice with chronic constriction injury(CCI)-induced neuropathic pain, antinociception action and firing-suppressing effect of HU210 were measured before and after BK channel blocker application. We found that local peripheral application of HU210 alleviated CCI-induced pain behavior and suppressed the heightened firing of injured fibers. Co-administration of IBTX with HU210 significantly reversed the analgesia and the firing-suppressing effect of HU210. This result indicated that the peripheral analgesic effects of cannabinoids depends on activation of BK channels.

Learn More >

Erenumab in chronic migraine with medication overuse: Subgroup analysis of a randomized trial.

To determine the effect of erenumab, a human anti-calcitonin gene-related peptide receptor monoclonal antibody, in patients with chronic migraine and medication overuse.

Learn More >

Chronic use of tramadol after acute pain episode: cohort study.

To determine the risk of prolonged opioid use in patients receiving tramadol compared with other short acting opioids.

Learn More >

Traditional and Novel Migraine Therapy in the Aging Population.

Migraine is a common disabling disorder that affects 36 million Americans. The clinical features of migraine are less typical in the people above age 60, making the diagnosis and treatment difficult in this group. In this review, we will discuss migraine-specific drugs and their use in populations about age 60 who suffer from migraine. This discussion will include an overview of traditional treatments for the acute and preventive treatment of migraine, and considerations for their use in patient populations above age 60. In addition, we will discuss newer agents that show a more promising safety profile.

Learn More >

Single cell transcriptomics reveals opioid usage evokes widespread suppression of antiviral genes.

Learn More >

Search