I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Reversal of peripheral neuropathic pain by the small-molecule natural product physalin F via block of CaV2.3 (R-type) and CaV2.2 (N-type) voltage-gated calcium channels.

No universally efficacious therapy exists for chronic pain, a disease affecting one-fifth of the global population. An overreliance in the prescription of opioids for chronic pain despite their poor ability to improve function has led to a national opioid crisis. In 2018, the NIH launched a Helping to End Addiction Long-term plan to spur discovery and validation of novel targets and mechanisms to develop alternative non-addictive treatment options. Phytochemicals with medicinal properties have long been used for various treatments worldwide. The natural product physalin F, isolated from the Physalis acutifolia (family: Solanaceae) herb, demonstrated antinociceptive effects in models of inflammatory pain, consistent with earlier reports of its anti-inflammatory and immunomodulatory activities. However, the target of action of physalin F remained unknown. Here, using whole-cell and slice electrophysiology, competition binding assays, and experimental models of neuropathic pain, we uncovered a molecular target for physalin F's antinociceptive actions. We found that physalin F: (i) blocks CaV2.3 (R-type) and CaV2.2 (N-type) voltage-gated calcium channels in dorsal root ganglion (DRG) neurons; (ii) does not affect CaV3 (T-type) voltage-gated calcium channels or voltage-gated sodium or potassium channels; (iii) does not bind G-protein coupled opioid receptors; (iv) inhibits the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in spinal cord slices; and (v) reverses tactile hypersensitivity in models of paclitaxel-induced peripheral neuropathy and spinal nerve ligation. Identifying CaV2.2 as a molecular target of physalin F may spur its use as a tool for mechanistic studies and position it as a structural template for future synthetic compounds.

Learn More >

Pyrazine-Fused Triterpenoids Block the TRPA1 Ion Channel in Vitro and Inhibit TRPA1-Mediated Acute Inflammation in Vivo.

TRPA1 is a nonselective cation channel, most famously expressed in nonmyelinated nociceptors. In addition to being an important chemical and mechanical pain sensor, TRPA1 has more recently appeared to have a role also in inflammation. Triterpenoids are natural products with anti-inflammatory and anticancer effects in experimental models. In this paper, 13 novel triterpenoids were created by synthetically modifying betulin, an abundant triterpenoid of the genus Betula L., and their TRPA1-modulating properties were examined. The Fluo 3-AM protocol was used in the initial screening, in which six of the 14 tested triterpenoids inhibited TRPA1 in a statistically significant manner. In subsequent whole-cell patch clamp recordings, the two most effective compounds (pyrazine-fused triterpenoids 8 and 9) displayed a reversible and dose- and voltage-dependent effect to block the TRPA1 ion channel at submicromolar concentrations. Interestingly, the TRPA1 blocking action was also evident in vivo, as compounds 8 and 9 both alleviated TRPA1 agonist-induced acute paw inflammation in mice. The results introduce betulin-derived pyrazine-fused triterpenoids as promising novel antagonists of TRPA1 that are potentially useful in treating diseases with a TRPA1-mediated adverse component.

Learn More >

Pharmacology of JNJ-28583113: A novel TRPM2 antagonist.

Transient receptor potential melastatin type 2 (TRPM2) is a cation channel activated by free intracellular ADP-ribose and reactive oxygen species. TRPM2 signaling has been linked to the pathophysiology of CNS disorders such as neuropathic pain, bipolar disorder and Alzheimer's disease. In this manuscript, we describe the discovery of JNJ-28583113, a potent brain penetrant TRPM2 antagonist. Ca flux assays in cells overexpressing TRPM2 and electrophysiological recordings were used to test the pharmacology of JNJ-28583113. JNJ-28583113 was assayed in vitro on GSK-3 phosphorylation levels, cell death, cytokine release in microglia and unbiased morphological phenotypic analysis. Finally, we dosed animals to evaluate its pharmacokinetic properties. Our results showed that JNJ-28583113 is a potent (126 ± 0.5 nM) TRPM2 antagonist. Blocking TRPM2 caused phosphorylation of GSK3α and β subunits. JNJ-28583113 also protected cells from oxidative stress induced cell death as well as morphological changes induced by non-cytotoxic concentrations of HO. In addition, inhibiting TRPM2 blunted cytokine release in response to pro-inflammatory stimuli in microglia. Lastly, we showed that JNJ-28583113 was brain penetrant but not suitable for systemic dosing as it was rapidly metabolized in vivo. While the in-vitro pharmacology of JNJ-28583113 is the best in class, its in-vivo properties would need optimization to assist in further probing key roles of TRPM2 in CNS pathophysiology.

Learn More >

Multiple actions of fenamates and other nonsteroidal anti-inflammatory drugs on GABA receptors.

The nonsteroidal anti-inflammatory drug (NSAID) niflumic acid, a fenamate in structure, has many molecular targets, one of them being specific subtypes of the main inhibitory ligand-gated anion channel, the GABA receptor. Here, we report on the effects of other fenamates and other classes of NSAIDs on brain picrotoxinin-sensitive GABA receptors, using an autoradiographic assay with [S]TBPS as a ligand on mouse brain sections. We found that the other fenamates studied (flufenamic acid, meclofenamic acid, mefenamic acid and tolfenamic acid) affected the autoradiographic signal at low micromolar concentrations in a facilitatory-like allosteric fashion, i.e., without having affinity to the [S]TBPS binding site. Unlike niflumic acid that shows clear preference for inhibiting cerebellar granule cell layer GABA receptors, the other fenamates showed little brain regional selectivity, indicating that their actions are not receptor-subtype selective. Of the non-fenamate NSAIDs studied at 100 μM concentration, diclofenac induced the greatest inhibition of the binding, which is not surprising as it has close structural similarity with the potent fenamate meclofenamic acid. Using two-electrode voltage-clamp assays on Xenopus oocytes, the effect of niflumic acid was found to be dependent on the β subunit variant and the presence of γ2 subunit in rat recombinant α1β and α1βγ2 GABA receptors, with the β1 allowing the niflumic acid inhibition and β3 the stimulation of the receptor-mediated currents. In summary, the fenamate NSAIDs constitute an interesting class of compounds that could be used for development of potent GABA receptor allosteric agonists with other targets to moderate inflammation, pain and associated anxiety/depression.

Learn More >

D2-like receptor agonist synergizes the μ-opioid agonist spinal antinociception in nociceptive, inflammatory and neuropathic models of pain in the rat.

Opioids are potent analgesic drugs, but their use has been limited due to their side effects. Antinociceptive effects of D2-like receptor agonists such as quinpirole have been shown at the spinal cord level; however, their efficacy is not as high as that of opioids. Dopaminergic agonists are long-prescribed and well-tolerated drugs that have been useful to treat clinically and experimentally painful conditions. Because current pain treatments are not completely effective, the aim of this work was to determine if a D2-like receptor agonist improves the antinociceptive effects of a μ-opioid receptor agonist. Drugs were intrathecally administered in adult rats; mechanonociceptive and thermonociceptive tests were carried out. Intraplantar injection of complete Freund's adjuvant (CFA) and sciatic loose ligation (SLL) were used for inflammatory and neuropathic models of pain, respectively. In intact animals, D-Ala2, N-MePhe4, Gly-ol-enkephalin (DAMGO; a µ-opioid receptor agonist) increased the paw withdrawal latencies (PWL) in thermal and mechanical nociceptive tests in a dose-dependent manner. Quinpirole (D2-like receptor agonist) increased PWL only in mechanonociception. In the presence of quinpirole (1 nmol), the ED of the mechanical antinociceptive effect of DAMGO was significantly decreased (8-fold). Coadministration of 1 nmol quinpirole and 30 pmol DAMGO completely reversed hyperalgesia in the CFA model, whereas 100pmol DAMGO plus 1 nmol quinpirole reversed the allodynia in the SLL model. This work offers evidence about a synergistic antinociceptive effect between opioidergic and dopaminergic drugs. This combination may relieve painful conditions resistant to conventional treatments, and it may reduce the adverse effects of chronic opioid administration.

Learn More >

Preoperative Opioids and 1-year Patient reported Outcomes After Spine Surgery.

Longitudinal Cohort Study.

Learn More >

Chemokine Signaling in Chemotherapy-Induced Neuropathic Pain.

Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of chemotherapics such as taxanes, vinca alkaloids, and platinum compounds. In recent years, several reports have indicated the involvement of different molecular mechanisms in CIPN. The pathways described so far are diverse and target various components of the peripheral Nervous System (PNS). Among the contributors to neuropathic pain, inflammation has been indicated as a powerful driver of CIPN. Several pieces of evidence have demonstrated a chemotherapy-induced increase in peripheral pro-inflammatory cytokines and a strong correlation with peripheral neuropathy. At present, there are not adequate strategies to prevent CIPN, although there are drugs for treating CIPN, such as duloxetine, that have displayed a moderate effect on CIPN. In this review, we focus on the players involved in CIPN with a particular emphasis on chemokine signaling.

Learn More >

Discovery of GlyT2 Inhibitors Using Structure-Based Pharmacophore Screening and Selectivity Studies by FEP+ Calculations.

In recent years, mammalian Glycine transporter 2 (GlyT2) has emerged as a promising target for the development of compounds against chronic pain states. In our current work, we discovered a new set of promising hits that inhibit the glycine transporter at nano- and micromolar activity and have excellent selectivity over GlyT1 (as shown by studies) using a newly designed virtual screening (VS) protocol that combines a structure-based pharmacophore and docking screens with a success rate of 75%. Furthermore, the free energy perturbation calculations and molecular dynamics (MD) studies revealed the GlyT2 amino acid residues critical for the binding and selectivity of both Glycine and our Hit1 compound. The FEP+ results well-matched with the available literature mutational data proving the quality of the generated GlyT2 structure. On the basis of these results, we propose that our hit compounds may lead to new chronic pain agents to address unmet and challenging clinical needs.

Learn More >

Cancer Exacerbates Chemotherapy Induced Sensory Neuropathy.

Learn More >

Effectiveness assessment of riluzole in the prevention of oxaliplatin-induced peripheral neuropathy: RILUZOX-01: protocol of a randomised, parallel, controlled, double-blind and multicentre study by the UNICANCER-AFSOS Supportive Care intergroup.

Most patients (>70%) experience acute neuropathic symptoms shortly after oxaliplatin infusions. These symptoms are not always resolved between infusions. Overall, 30%-50% of patients suffer from chronic oxaliplatin-induced peripheral neuropathy (OIPN). This cumulative and dose-dependent sensory neuropathy limits compliance or results in oxaliplatin-based chemotherapies to be substituted with less neurotoxic agents. These treatment changes impair clinical outcomes, and may be associated with comorbidities, such as distress, depression and anxiety. Currently, no drug used to prevent or treat OIPN is sufficiently effective to be used routinely in clinical practice. There is, thus, an unmet therapeutic need to reduce the intensity of and/or prevent OIPN. We hypothesised that riluzole would be an excellent candidate to address this public health issue. Riluzole is approved for treating amyotrophic lateral sclerosis. In animals, there is a beneficial effect on sensorimotor and pain disorders, as well as related comorbidities, after repeated administration of oxaliplatin. In humans, riluzole has shown neuroprotective, anxiolytic and antidepressive effects.

Learn More >

Search