I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Discovery of a Selective, State-Independent Inhibitor of NaV1.7 by Modification of Guanidinium Toxins.

Learn More >

Novel Analgesic Agents Obtained by Molecular Hybridization of Orthosteric and Allosteric Ligands.

Learn More >

Oral Dimethyl Fumarate Reduces Peripheral Neuropathic Pain in Rodents via NFE2L2 Antioxidant Signaling.

Oxidative stress is an important driver of neuropathic painDimethyl fumarate activates nuclear factor erythroid 2-related factor 2, increasing the expression of multiple antioxidant genes WHAT THIS ARTICLE TELLS US THAT IS NEW: Using a rat model of nerve injury, both male and female animals displayed reduced mechanical and nociceptive sensitization when given dimethyl fumarateDimethyl fumarate administration increased superoxide dismutase activity while decreasing cytokine expression and improving mitochondrial bioenergetics BACKGROUND:: Available treatments for neuropathic pain have modest efficacy and significant adverse effects, including abuse potential. Because oxidative stress is a key mechanistic node for neuropathic pain, the authors focused on the master regulator of the antioxidant response-nuclear factor erythroid 2-related factor 2 (NFE2L2; Nrf2)-as an alternative target for neuropathic pain. The authors tested whether dimethyl fumarate (U.S. Food and Drug Administration-approved treatment for multiple sclerosis) would activate NFE2L2 and promote antioxidant activity to reverse neuropathic pain behaviors and oxidative stress-dependent mechanisms.

Learn More >

Pharmacological strategies in multimodal analgesia for adults scheduled for ambulatory surgery.

The present review aims to propose pharmacological strategies to enhance current clinical practices for analgesia in ambulatory surgical settings and in the context of the opioid epidemic.

Learn More >

A randomized pilot study to investigate the effect of opioids on immunomarkers using gene expression profiling during surgery.

Endogenous opioid peptides and exogenous opioids modulate immune function and animal and human studies have shown that some have a depressant immunomodulatory effect. This is potentially of high clinical significance for example in cancer patients and surgery.The primary objective of this pilot study was to evaluate the effect of morphine and oxycodone on immune pathways associated with immunosuppression in gynecological laparotomy patients.Gene expression was analyzed in CD4+, CD8+ and NK cells using the 3' Affymetrix microarray. Patients were randomized to receive morphine, oxycodone, or non-opioid 'control' analgesia during and after surgery. Genes demonstrating differential expression were those with a ≥±2-fold difference and p-value≤0.05 following ANOVA. Cytometric bead array and NK cell degranulation assay were used to investigate changes in serum cytokine concentration and in NK cell cytotoxicity, respectively. Forty patients had satisfactory RNA which was hybridized to gene chips. Genes were identified (Partek® Genomics Suite® 6.6) at baseline, 2 h, 6 h and 24 h and were either ≥2-fold up or down-regulated from baseline.At 2 h, a large number of genes were down-regulated with morphine but not with control analgesia or oxycodone. Statistically significant increases in IL-6 concentrations were induced by morphine only; NK cell activity was suppressed with morphine, but maintained with oxycodone and epidural analgesia.Gene expression profiles suggest that at 2 h post-incision morphine appeared to be immunosuppressive as compared to oxycodone and non-opioid control analgesia.

Learn More >

When therapeutic expectancies are violated: An fMRI study.

Positive and negative expectancies drive behavioral and neurobiological placebo and nocebo effects which in turn can have profound effects on patient improvement or worsening. However, expectations of events and outcomes are often not met in daily life and clinical practice. It is currently unknown how this affects placebo and nocebo effects. We have demonstrated that the violation of expectancies, such as when a discrepancy between what is expected and what is actually presented, reduces both placebo and nocebo effects while causing an extinction of placebo effects. The reduction of placebo and nocebo effects was paralleled by an activation of the left inferior parietal cortex, a brain region that redirects attention when discrepancies between sensory and cognitive events occur. Our findings highlight the importance of expectancy violation in shaping placebo and nocebo effects and open up new avenues for managing positive and negative expectations in clinical trials and practices. This article is protected by copyright. All rights reserved.

Learn More >

Pharmacological interventions targeting Wnt/β-catenin signaling pathway attenuate paclitaxel-induced peripheral neuropathy.

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling pain condition which occurs as a consequence of cancer chemotherapy with anti-cancer agents like paclitaxel, oxaliplatin, etc. Despite immense research in the pathological pathways involved in CIPN, treatment options still remain limited. Recently, pathological involvement of Wnt signaling has been investigated in various neuropathic pain models, however there are no reports as yet on the role of Wnt signaling in CIPN. In the present study, we have investigated the neuroprotective effects of Wnt signaling inhibitors namely LGK974 (Porcupine inhibitor), NSC668036 (Disheveled inhibitor) and PNU76454 (β-catenin inhibitor) in paclitaxel-induced neuropathic pain. Paclitaxel (2 mg/kg, i. p.) was administered to male Sprague Dawley rats on four alternate days. After 21 days, paclitaxel-treated rats showed reduced behavioral pain thresholds (cold allodynia, heat & mechanical hyperalgesia) and nerve functions (nerve conduction velocity and nerve blood flow). Moreover, Wnt signaling proteins (Wnt3a, β-catenin, c-myc and Dvl1), inflammatory marker (matrix metalloproteinase 2) and endoplasmic reticulum stress marker (GRP78) were found to be upregulated in the sciatic nerves of paclitaxel-treated rats accompanied with loss of intraepidermal nerve fiber density as compared to the control rats. Intrathecal administration of Wnt inhibitors (each at dose of 10 and 30 μM) for three consecutive days to paclitaxel-treated rats, significantly improved behavioral pain thresholds and nerve functional parameters by inhibition of Wnt signaling, inflammation, endoplasmic reticulum stress and improvement of intraepidermal nerve fiber density. All these results suggested the neuroprotective potential of Wnt signaling inhibitors in CIPN.

Learn More >

Withdrawal from an opioid induces a transferable memory trace in the cerebrospinal fluid.

Opioids are the most powerful analgesics available to date. However, they may also induce adverse effects including paradoxical opioid-induced hyperalgesia (OIH). A mechanism that might underlie OIH is the amplification of synaptic strength at spinal C-fibre synapses after withdrawal from systemic opioids such as remifentanil ("opioid-withdrawal-LTP").Here, we show that both, the induction as well as the maintenance of opioid-withdrawal-LTP were abolished by pharmacological blockade of spinal glial cells. In contrast, the blockade of TLR4 had no effect on the induction of opioid-withdrawal-LTP. D-serine, which may be released upon glial cell activation, was necessary for withdrawal-LTP. D-serine is the dominant co-agonist for neuronal NMDA-receptors, which are required for the amplification of synaptic strength upon remifentanil withdrawal.Unexpectedly, opioid-withdrawal-LTP was transferable via the cerebrospinal fluid between animals. This suggests that glial cell-derived mediators accumulate in the extracellular space and reach the cerebrospinal fluid at biologically active concentrations, thereby creating a soluble memory trace that is transferable to another animal ("transfer-LTP"). When we enzymatically degraded D-serine in the superfusate, LTP could no longer be transferred. Transfer-LTP was insensitive to pharmacological blockade of glial cells in the recipient animal, thus representing a rare form of glial-cell independent LTP in the spinal cord.

Learn More >

Erenumab (AMG 334), a monoclonal antagonist antibody against the canonical CGRP receptor, does not impair vasodilatory or contractile responses to other vasoactive agents in human isolated cranial arteries.

Calcitonin gene-related peptide (CGRP) is a neuronal transmitter present in intracranial sensory nerves, where it is involved in migraine pathophysiology as well as other biological functions. Recently, the fully human monoclonal antibody erenumab (AMG 334), which targets the canonical calcitonin gene-related peptide receptor, showed significant prophylactic efficacy and favourable safety in phase II and III clinical trials for episodic and chronic migraine and is now approved for migraine prevention in several countries.

Learn More >

Structure of an allosteric modulator bound to the CB1 cannabinoid receptor.

The CB1 receptor mediates the central nervous system response to cannabinoids, and is a drug target for pain, anxiety and seizures. CB1 also responds to allosteric modulators, which influence cannabinoid binding and efficacy. To understand the mechanism of these compounds, we solved the crystal structure of CB1 with the negative allosteric modulator (NAM) ORG27569 and the agonist CP55940. The structure reveals that the NAM binds to an extrahelical site within the inner leaflet of the membrane, which overlaps with a conserved site of cholesterol interaction in many G protein-coupled receptors (GPCRs). The ternary structure with ORG27569 and CP55940 captures an intermediate state of the receptor, in which aromatic residues at the base of the agonist-binding pocket adopt an inactive conformation despite the large contraction of the orthosteric pocket. The structure illustrates a potential strategy for drug modulation of CB1 and other class A GPCRs.

Learn More >

Search