I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Medication overuse headache in 787 patients admitted for inpatient treatment over a period of 32 years.

Definitions of medication overuse headache have changed over time.

Learn More >

Analgesic Effect of Intraoperative Intravenous S-Ketamine in Opioid-Naïve Patients After Major Lumbar Fusion Surgery Is Temporary and Not Dose-Dependent: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial.

Severe pain often accompanies major spine surgery. Opioids are the cornerstone of postoperative pain management but their use can be limited by numerous side effects. Several studies claim that adjuvant treatment with intravenous (IV) ketamine reduces opioid consumption and pain after back surgery. However, the exact role of ketamine for this indication is yet to be elucidated. We compared 2 different doses of S-ketamine with placebo on postoperative analgesic consumption, pain, and adverse events in adult, opioid-naïve patients after lumbar fusion surgery.

Learn More >

Cortical potentiation induced by calcitonin gene-related peptide (CGRP) in the insular cortex of adult mice.

Recent studies demonstrate that calcitonin gene-related peptide (CGRP) plays critical roles in migraine. Immunohistochemistry and in situ hybridization studies have shown that CGRP and its receptors are expressed in cortical areas that are critical for pain perception including the anterior cingulate cortex (ACC) and insular cortex (IC). Recent studies reported that CGRP enhanced excitatory transmission in the ACC. However, little is known about the possible effect of CGRP on excitatory transmission in the IC. In the present study, we investigated the role of CGRP on synaptic transmission in the IC slices of adult male mice. Bath application of CGRP produced dose-dependent potentiation of evoked excitatory postsynaptic currents (eEPSCs). This potentiation was NMDA receptor (NMDAR) independent. After application of CGRP1 receptor antagonist CGRP or BIBN 4096, CGRP produced potentiation was significantly reduced. Paired-pulse facilitation was significantly decreased by CGRP, suggesting possible presynaptic mechanisms. Consistently, bath application of CGRP significantly increased the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs). By contrast, amplitudes of sEPSCs and mEPSCs were not significantly affected. Finally, adenylyl cyclase subtype 1 (AC1) and protein kinase A (PKA) are critical for CGRP-produced potentiation, since both selective AC1 inhibitor NB001 and the PKA inhibitor KT5720 completely blocked the potentiation. Our results provide direct evidence that CGRP contributes to synaptic potentiation in the IC, and the AC1 inhibitor NB001 may be beneficial for the treatment of migraine in the future.

Learn More >

Measuring Opioid Withdrawal in a Phase 3 Study of a New Analgesic, NKTR-181 (Oxycodegol), in Patients with Moderate to Severe Chronic Low Back Pain.

To evaluate the SUMMIT-07 trial opioid withdrawal results of NKTR-181 (oxycodegol), a new molecular entity mu-opioid receptor agonist.

Learn More >

Replacement of current opioid drugs focusing on MOR-related strategies.

The scarcity and limited risk/benefit ratio of painkillers available on the market, in addition to the opioid crisis, warrant reflection on new innovation strategies. The pharmacopoeia of analgesics is based on products that are often old and derived from clinical empiricism, with limited efficacy or spectrum of action, or resulting in an unsatisfactory tolerability profile. Although they are reference analgesics for nociceptive pain, opioids are subject to the same criticism. The use of opium as an analgesic is historical. Morphine was synthesized at the beginning of the 19th century. The efficacy of opioids is limited in certain painful contexts and these drugs can induce potentially serious and fatal adverse effects. The current North American opioid crisis, with an ever-rising number of deaths by opioid overdose, is a tragic illustration of this. It is therefore legitimate to develop research into molecules likely to maintain or increase opioid efficacy while improving their tolerability. Several avenues are being explored including targeting of the mu opioid receptor (MOR) splice variants, developing biased agonists or targeting of other receptors such as heteromers with MOR. Ion channels acting as MOR effectors, are also targeted in order to offer compounds without MOR-dependent adverse effects. Another route is to develop opioid analgesics with peripheral action or limited central nervous system (CNS) access. Finally, endogenous opioids used as drugs or compounds that modify the metabolism of endogenous opioids (Dual ENKephalinase Inhibitors) are being developed. The aim of the present review is to present these various targets/strategies with reference to current indications for opioids, concerns about their widespread use, particularly in chronic non-cancer pains, and ways of limiting the risk of opioid abuse and misuse.

Learn More >

A cautious hope for cannabidiol (CBD) in rheumatology care.

Cannabidiol (CBD), a major metabolite of Cannabis sativa, is popularized as a medicinal product, with potential for analgesic, anti-inflammatory and antioxidant effects. CBD may hold promise as a treatment in rheumatic diseases, but evidence to date remains preclinical. Preclinical effects on pain and inflammation is encouraging, but clinical study is lacking with only a single study in knee osteoarthritis reporting promising effect on symptoms. CBD products are freely available over the counter and marketed as food supplements or wellness products. The World Health Organization has identified pure CBD as safe and without abuse potential, but products are not subject to drug regulatory standards leading to inconsistency in manufacturing practices and quality of products. Not only have molecular concentrations of CBD been identified as inaccurate, but there are concerns for contaminants including heavy metals, pesticides, microbes and mycotoxins, as well as added THC. Drug-drug interactions pose a potential risk due to metabolism via the CYP P450 enzyme pathway. Patients wishing to use CBD should obtain a product with certification of Good Manufacturing Practices, initiate treatment with a nighttime low dose and have defined outcome goals within a reasonable time frame. Treatments should not be managed by non-medical dispensary personnel. The hope that CBD may be a useful therapy must be substantiated by sound scientific study.

Learn More >

Disabling phosphorylation at the homer ligand of the metabotropic glutamate receptor 5 alleviates complete Freund’s adjuvant-induced inflammatory pain.

Metabotropic glutamate receptor 5 (mGluR5) has been reported to contribute to inflammatory pain. The intracellular C-terminal domain has a Homer-binding motif that can form an mGluR5/Homer complex. Phosphorylation of mGluR5 at the Homer binding domain enhances the mGluR5/Homer interaction and modulates intracellular signal transduction. However, the characteristics of this interaction have not been fully elucidated in inflammatory pain. We aimed to evaluate the effects of CFA-induced phosphorylation of mGluR5 at the Homer binding domain on the mGluR5/Homer interaction. Von-frey filaments and thermal latency were used to monitor the development of inflammatory pain. Spinal mGluR5 phosphorylation at Ser and mGluR5/Homer crosslinking were detected. Mutant mGluR5 that could not be phosphorylated at Thr or Ser was evaluated in inflammatory pain. CFA-induced inflammatory pain resulted in obvious phosphorylation at Ser of mGluR5. Moreover, increased phosphorylation at the Homer-binding motif enhanced crosslinking between mGluR5 and Homer. Mutations at Thr and Ser of mGluR5 blocked the development of CFA-induced inflammatory pain. Overall, our findings showed that disruption of the phosphorylation of mGluR5 Thr and Ser alleviated CFA-induced inflammatory pain.

Learn More >

NOP receptor agonist attenuates nitroglycerin-induced migraine-like symptoms in mice.

Migraine is an extraordinarily prevalent and disabling headache disorder that affects one billion people worldwide. Throbbing pain is one of several migraine symptoms including sensitivity to light (photophobia), sometimes to sounds, smell and touch. The basic mechanisms underlying migraine remain inadequately understood, and current treatments (with triptans being the primary standard of care) are not well tolerated by some patients. NOP (Nociceptin OPioid) receptors, the fourth member of the opioid receptor family, are expressed in the brain and periphery with particularly high expression known to be in trigeminal ganglia (TG). The aim of our study was to further explore the involvement of the NOP receptor system in migraine. To this end, we used immunohistochemistry to examine NOP receptor distribution in TG and trigeminal nucleus caudalus (TNC) in mice, including colocalization with specific cellular markers, and used nitroglycerin (NTG) models of migraine to assess the influence of the selective NOP receptor agonist, Ro 64-6198, on NTG-induced pain (sensitivity of paw and head using von Frey filaments) and photophobia in mice. Our immunohistochemical studies with NOP-eGFP knock-in mice indicate that NOP receptors are on the majority of neurons in the TG and are also very highly expressed in the TNC. In addition, Ro 64-6198 can dose dependently block NTG-induced paw and head allodynia, an effect that is blocked by the NOP antagonist, SB-612111. Moreover, Ro 64-6198, can decrease NTG-induced light sensitivity in mice. These results suggest that NOP receptor agonists should be futher explored as treatment for migraine symptoms.

Learn More >

Cell-penetrating pepducins targeting the neurotensin receptor type 1 relieve pain.

Pepducins are cell-penetrating, membrane-tethered lipopeptides designed to target the intracellular region of a G protein-coupled receptor (GPCR) in order to allosterically modulate the receptor's signaling output. In this proof-of-concept study, we explored the pain-relief potential of a pepducin series derived from the first intracellular loop of neurotensin receptor type 1 (NTS1), a class A GPCR that mediates many of the effects of the neurotensin (NT) tridecapeptide, including hypothermia, hypotension and analgesia. We used BRET-based biosensors to determine the pepducins' ability to engage G protein signaling pathways associated with NTS1 activation. We observed partial Gα and Gα activation at a 10 µM concentration, indicating that these pepducins may act as allosteric agonists of NTS1. Additionally, we used surface plasmon resonance (SPR) as a label-free assay to monitor pepducin-induced responses in CHO-K1 cells stably expressing hNTS1. This whole-cell integrated assay enabled us to subdivide our pepducin series into three profile response groups. In order to determine the pepducins' antinociceptive potential, we then screened the series in an acute pain model (tail-flick test) by measuring tail withdrawal latencies to a thermal nociceptive stimulus, following intrathecal (i.t.) pepducin administration (275 nmol/kg). We further evaluated promising pepducins in a tonic pain model (formalin test), as well as in neuropathic (Chronic Constriction Injury) and inflammatory (Complete Freund's Adjuvant) chronic pain models. We report one pepducin, PP-001, that consistently reduced rat nociceptive behaviors, even in chronic pain paradigms. Finally, we designed a TAMRA-tagged version of PP-001 and found by confocal microscopy that the pepducin reached the rat dorsal root ganglia post i.t. injection, thus potentially modulating the activity of NTS1 at this location to produce its analgesic effect. Altogether, these results suggest that NTS1-derived pepducins may represent a promising strategy in pain-relief.

Learn More >

Anteromedial thalamic nucleus to anterior cingulate cortex inputs modulate histaminergic itch sensation.

Itch is an unpleasant feeling that triggers scratching behavior. Much progress has been made in identifying the mechanism of itch at the peripheral and spinal levels, however, itch circuits in the brain remain largely unexplored. We previously found that anterior cingulate cortex (ACC) to dorsal medial striatum (DMS) inputs modulated histamine-induced itch sensation, but how itch information was transmitted to ACC remained unclear. Here, we demonstrated that the anteromedial thalamic nucleus (AM) was activated during histaminergic itch, and there existed reciprocal neuronal projections between AM and ACC. Disconnection between AM and ACC resulted in a significant reduction of histaminergic, but not nonhistaminergic, itch-related scratching behavior. Optogenetic activation of AM-ACC, but not ACC-AM, projections evoked histaminergic itch sensation. Thus, our studies firstly reveal that AM is critical for histaminergic itch sensation and AM-ACC projections modulate histaminergic itch-induced scratching behavior.

Learn More >

Search