I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Suppression of peripheral NGF attenuates neuropathic pain induced by chronic constriction injury through the TAK1-MAPK/NF-κB signaling pathways.

Anti-nerve growth factor (NGF) monoclonal antibodies (anti-NGF mAbs) have been reported to significantly attenuate pain, but the mechanism involved has not been fully elucidated, and the serious adverse events associated with mAbs seriously limit their clinical use. This study further investigated the mechanism by which peripheral NGF is involved in neuropathic pain and found safe, natural compounds that target NGF to attenuate neuropathic pain.

Learn More >

Duloxetine ameliorates the impairment of diffuse noxious inhibitory control in rat models of peripheral neuropathic pain and knee osteoarthritis pain.

Diffuse noxious inhibitory control (DNIC) is a phenomenon to reflect descending pain modulation in animals. Conditioned pain modulation (CPM) is the human counterpart of DNIC and is reduced in patients with several chronic pain conditions. Duloxetine is a serotonin and noradrenaline reuptake inhibitor that ameliorates CPM impairment in patients with diabetic neuropathy. Although some studies have reported the effects of different pharmacological agents on CPM, few studies have compared the effects of some analgesics in both humans and rodents. Therefore, we established a stable evaluation method for DNIC in rats and determined whether duloxetine and other specific analgesics affect DNIC impairment in rat models of peripheral neuropathic pain and osteoarthritis pain, two types of chronic pain. As a conditioning stimulus, capsaicin was injected into the forepaw of rats. The paw withdrawal threshold (PWT) in response to mechanical pressure was measured for the hindpaw. Peripheral neuropathic pain and osteoarthritis pain models were developed by partial sciatic nerve ligation (PSNL) and the intra-articular injection of 2 mg monoiodoacetate (MIA), respectively. Capsaicin (30-100 μg/site) increased the PWT, in a dose-dependent manner, in naive rats. The threshold significantly increased at 30 μg and reached its maximal level at 100 μg. The change in PWT following capsaicin injection was significantly reduced in PSNL-treated rats, but the threshold was increased by the subcutaneous administration of duloxetine (10 mg/kg). The oral administrations of pregabalin (10 mg/kg) and celecoxib (3 mg/kg) did not affect the PWT in PSNL-treated rats. Similarly, MIA-injected rats also showed a reduced change in PWT following capsaicin injection. Duloxetine, but not pregabalin and celecoxib, significantly increased the PWT in MIA-injected rats. These results suggested that duloxetine can directly ameliorate DNIC impairment in rat models of chronic pain. Duloxetine may be useful for modulating chronic pain by restoring function to the endogenous, descending, inhibitory pathway.

Learn More >

Lidocaine Alleviates Neuropathic Pain and Neuroinflammation by Inhibiting HMGB1 Expression to Mediate MIP-1α/CCR1 Pathway.

High mobility group box 1 (HMGB1) released from sensory nerve tissues can induce neuropathic pain. Whether HMGB1 is implicated in the mechanism underlying the effect of lidocaine in pain management remains to be determined. This study aims to explore the effect of lidocaine in a rat model of spared nerve injury (SNI) and the underlying mechanism. An SNI model was established via nerve ligation. Two weeks after the SNI model was established, rats were intrathecally injected with lidocaine, an HMGB1 antibody (HMG Ab), an MIP-1α antibody (MIP-1α Ab), a CCR1 inhibitor (CCR1-RS) or a CCR5 antagonist (CCR5-Mar). Pain behaviors were assessed before and after model establishment to calculate the number of spontaneous flinches (NSF), paw withdrawal threshold (PWT), paw withdrawal thermal latency (PWL) and sciatic function index (SFI). Cell apoptosis and the inflammatory response in the cerebrospinal fluid (CSF) were detected by TUNEL staining and ELISA. The mRNA and protein expression levels of MIP-1α, CCR1 and CCR5 were determined by RT-PCR and Western blotting. The expression levels of HMGB1, MIP-1α, CCR1 and CCR5 were measured by Western blotting and immunofluorescence. Pain behavior testing in SNI rats showed that SNI rats exhibited an increased NSF and a decreased PWT, PWL and SFI. Cell apoptosis in the spinal dorsal horn and the generation of inflammatory cytokines were enhanced in SNI rats, and the expression levels of HMGB1, MIP-1α, CCR1 and CCR5 were upregulated. HMGB1 cytoplasmic translocation, the coexpression of MIP-1α with NeuN, and the coexpression of CCR1 and CCR5 with OX42 were also observed in SNI rats. Neuropathic pain and neuroinflammation were suppressed by the intrathecal injection of lidocaine, HMG Ab, MIP-1α Ab, CCR1-RS or CCR5-Mar. Lidocaine inhibited the expression levels of HMGB1, MIP-1α, CCR1 and CCR5, and the HMGB1 antibody suppressed the expression of MIP-1α, CCR1 and CCR5. Lidocaine attenuates neuropathic pain and neuroinflammation by inhibiting HMGB1 to regulate the MIP-1α/CCR1/CCR5 pathway. Graphical Abstract.

Learn More >

Non-steroidal anti-inflammatory drugs for acute low back pain.

Acute low back pain (LBP) is a common health problem. Non-steroidal anti-inflammatory drugs (NSAIDs) are often used in the treatment of LBP, particularly in people with acute LBP. In 2008, a Cochrane Review was published about the efficacy of NSAIDs for LBP (acute, chronic, and sciatica), identifying a small but significant effect in favour of NSAIDs compared to placebo for short-term pain reduction and global improvement in participants with acute LBP. This is an update of the previous review, focusing on acute LBP.

Learn More >

Challenging the challenge: a randomized controlled trial evaluating the inflammatory response and pain perception of healthy volunteers after single-dose LPS administration, as a potential model for inflammatory pain in early-phase drug development.

Following an infection, cytokines not only regulate the acute immune response, but also contribute to symptoms such as inflammatory hyperalgesia. We aimed to characterize the acute inflammatory response induced by a human endotoxemia model, and its effect on pain perception using evoked pain tests in two different dose levels. We also attempted to determine whether combining a human endotoxemia challenge with measurement of pain thresholds in healthy subjects could serve as a model to study drug effects on inflammatory pain.

Learn More >

miRNA 146a-5p-loaded poly(d,l-lactic-co-glycolic acid) nanoparticles impair pain behaviors by inhibiting multiple inflammatory pathways in microglia.

We investigated whether miRNA (miR) 146a-5p-loaded nanoparticles (NPs) can attenuate neuropathic pain behaviors in the rat spinal nerve ligation-induced neuropathic pain model by inhibiting activation of the NF-κB and p38 MAPK pathways in spinal microglia. After NP preparation, miR NPs were assessed for their physical characteristics and then injected intrathecally into the spinal cords of rat spinal nerve ligation rats to test their analgesic effects. miR NPs reduced pain behaviors for 11 days by negatively regulating the inflammatory response in spinal microglia. The anti-inflammatory effects of miR 146a-5p along with nanoparticle-based materials make miR NPs promising tools for treating neuropathic pain.

Learn More >

Chronic morphine regulates TRPM8 channels via MOR-PKCβ signaling.

Postoperative shivering and cold hypersensitivity are major side effects of acute and chronic opioid treatments respectively. TRPM8 is a cold and menthol-sensitive channel found in a subset of dorsal root ganglion (DRG) nociceptors. Deletion or inhibition of the TRPM8 channel was found to prevent the cold hyperalgesia induced by chronic administration of morphine. Here, we examined the mechanisms by which morphine was able to promote cold hypersensitivity in DRG neurons and transfected HEK cells. Mice daily injected with morphine for 5 days developed cold hyperalgesia. Treatment with morphine did not alter the expressions of cold sensitive TREK-1, TRAAK and TRPM8 in DRGs. However, TRPM8-expressing DRG neurons isolated from morphine-treated mice exhibited hyperexcitability. Sustained morphine treatment in vitro sensitized TRPM8 responsiveness to cold or menthol and reduced activation-evoked desensitization of the channel. Blocking phospholipase C (PLC) as well as protein kinase C beta (PKCβ), but not protein kinase A (PKA) or Rho-associated protein kinase (ROCK), restored channel desensitization. Identification of two PKC phosphorylation consensus sites, S1040 and S1041, in the TRPM8 and their site-directed mutation were able to prevent the MOR-induced reduction in TRPM8 desensitization. Our results show that activation of MOR by morphine 1) promotes hyperexcitability of TRPM8-expressing neurons and 2) induces a PKCβ-mediated reduction of TRPM8 desensitization. This MOR-PKCβ dependent modulation of TRPM8 may underlie the onset of cold hyperalgesia caused by repeated administration of morphine. Our findings point to TRPM8 channel and PKCβ as important targets for opioid-induced cold hypersensitivity.

Learn More >

Nonsteroidal Anti-Inflammatory Drugs and Opioids in Postsurgical Dental Pain.

Postsurgical dental pain is mainly driven by inflammation, particularly through the generation of prostaglandins via the cyclooxygenase system. Thus, it is no surprise that numerous randomized placebo-controlled trials studying acute pain following the surgical extraction of impacted third molars have demonstrated the remarkable efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, naproxen sodium, etodolac, diclofenac, and ketorolac in this prototypic condition of acute inflammatory pain. Combining an optimal dose of an NSAID with an appropriate dose of acetaminophen appears to further enhance analgesic efficacy and potentially reduce the need for opioids. In addition to being on average inferior to NSAIDs as analgesics in postsurgical dental pain, opioids produce a higher incidence of side effects in dental outpatients, including dizziness, drowsiness, psychomotor impairment, nausea/vomiting, and constipation. Unused opioids are also subject to misuse and diversion, and they may cause addiction. Despite these risks, some dental surgical outpatients may benefit from a 1- or 2-d course of opioids added to their NSAID regimen. NSAID use may carry significant risks in certain patient populations, in which a short course of an acetaminophen/opioid combination may provide a more favorable benefit versus risk ratio than an NSAID regimen.

Learn More >

Activation of sphingosine-1-phosphate receptor subtype 1 in the central nervous system contributes to morphine-induced hyperalgesia and antinociceptive tolerance in rodents.

Morphine-induced alterations in sphingolipid metabolism in the spinal cord and increased formation of the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) have been implicated in the development of morphine-induced hyperalgesia (OIH; increased pain sensitivity) and antinociceptive tolerance. These adverse effects hamper opioid use for treating chronic pain and contribute to dependence and abuse. S1P produces distinct effects through five G protein-coupled receptors (S1PR1-5) and several intracellular targets. How S1P exerts its effects in response to morphine remains unknown. Here, we report that S1P contributes to the development of OIH and tolerance through S1P1 receptor subtype 1 (S1PR1) signaling in uninjured male and female rodents that can be blocked by targeting S1PR1 with S1PR1 antagonists or RNA silencing. In mouse neuropathic pain models, S1PR1 antagonists blocked the development of tolerance to the anti-allodynic effects of morphine without altering morphine pharmacokinetics and prevented prolonged morphine-induced neuropathic pain. Targeting S1PR1 reduced morphine-induced neuroinflammatory events in the dorsal horn of the spinal cord: increased glial marker expression, mitogen-activated protein kinase p38 and nuclear factor κB activation and increased inflammatory cytokine expression, such as interleukin-1β, a cytokine central in the modulation of opioid-induced neural plasticity. Our results identify S1PR1 as a critical path for S1P signaling in response to sustained morphine and reveal downstream neuroinflammatory pathways impacted by S1PR1 activation. Our data support investigating S1PR1 antagonists as a clinical approach to mitigate opioid-induced adverse effects and repurposing the functional S1PR1 antagonist FTY720, which is FDA-approved for multiple sclerosis, as an opioid adjunct.

Learn More >

Pain-modulating effects of oxytocin in patients with chronic low back pain.

The neuropeptide oxytocin (OT) has been shown to play a modulatory role in nociception. However, analgesic effects of OT in chronic pain conditions remain elusive and the neural underpinnings have not yet been investigated in humans. Here, we conducted an exploratory, randomized, placebo-controlled, cross-over study to examine effects of intranasal OT in male patients suffering from chronic low back pain (CBP) versus healthy controls (HC). N = 22 participants with CBP and 22 HCs were scanned using functional magnetic resonance imaging (fMRI) while they continuously rated either spontaneously occurring back pain or acute thermal pain stimuli applied to the lower back. During heat pain processing we found that OT versus PL attenuated pain intensity ratings and increased BOLD responses in the caudate nucleus of the striatum in CBP versus HCs. Spontaneously experienced pain in contrast to heat pain was associated with activation changes in the medial frontal cortex (MFC) and the anterior cingulate cortex (ACC) as reported in previous studies. However, we did not observe OT effects on spontaneously experienced pain in CBP patients. Overall, our preliminary data may suggest that the striatum is a key structure underlying the pain-modulating effects of OT in patients with chronic pain and adds to the growing evidence linking the neuropeptide to pain modulation in humans. Further studies on neuronal OT effects in larger samples of chronic back pain patients are needed to understand probable mechanisms of OT effects in chronic pain.

Learn More >

Search