I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Lasmiditan for the acute treatment of migraine.

Learn More >

Classifying Preoperative Opioid Use for Surgical Care.

We characterized patterns of preoperative opioid use in patients undergoing elective surgery to identify the relationship between preoperative use and subsequent opioid fill after surgery.

Learn More >

Pharmacological characterization of a rat Nav1.7 loss-of-function model with insensitivity to pain.

Sodium channel Nav1.7, encoded by the SCN9A gene, is a well-validated target that plays a key role in controlling pain sensation. Loss-of-function mutations of Nav1.7 can cause a syndrome of profound congenital insensitivity to pain in humans. Better understanding of how the loss of Nav1.7 leads to loss of pain sensibility would help to decipher the fundamental mechanisms of nociception and inform strategies for development of novel analgesics. Using a recently described rat Nav1.7 loss-of-function model with deficient nociception but intact olfactory function, we investigated the involvement of endogenous opioid and cannabinoid systems in this rodent model of Nav1.7-related congenital insensitivity to pain. We found that both the opioid receptor antagonist naloxone and cannabinoid receptor blockers SR141716A (rimonabant) and SR144528 fail to restore acute pain sensitivity in Nav1.7 loss-of-function rats. We observed, however, that after rimonabant administration, Nav1.7 loss-of-function but not WT rats displayed abnormal behaviours, such as enhanced scratching, caudal self-biting, and altered facial expressions; the underlying mechanism is still unclear. Dorsal root ganglion neurons from Nav1.7 loss-of-function rats, although hypoexcitable compared with WT neurons, were still able to generate action potentials in response to noxious heat and capsaicin. Our data indicate that complete loss of dorsal root ganglion neuron excitability is not required for insensitivity to pain and suggest that endogenous opioid and cannabinoid systems are not required for insensitivity to pain in the absence of Nav1.7 channels in this rat Nav1.7 loss-of-function model.

Learn More >

Potential therapeutic treatments of cancer-induced bone pain.

The treatment of cancer-induced bone pain (CIBP) has been proven ineffective and relies heavily on opioids, the target of highly visible criticism for their negative side effects. Alternative therapeutic agents are needed and the last few years have brought promising results, detailed in this review.

Learn More >

A pharmacological interactome between COVID-19 patient samples and human sensory neurons reveals potential drivers of neurogenic pulmonary dysfunction.

The SARS-CoV-2 virus infects cells of the airway and lungs in humans causing the disease COVID-19. This disease is characterized by cough, shortness of breath, and in severe cases causes pneumonia and acute respiratory distress syndrome (ARDS) which can be fatal. Bronchial alveolar lavage fluid (BALF) and plasma from mild and severe cases of COVID-19 have been profiled using protein measurements and bulk and single cell RNA sequencing. Onset of pneumonia and ARDS can be rapid in COVID-19, suggesting a potential neuronal involvement in pathology and mortality. We hypothesized that SARS-CoV-2 infection drives changes in immune cell-derived factors that then interact with receptors expressed by the sensory neuronal innervation of the lung to further promote important aspects of disease severity, including ARDS. We sought to quantify how immune cells might interact with sensory innervation of the lung in COVID-19 using published data from patients, existing RNA sequencing datasets from human dorsal root ganglion neurons and other sources, and a genome-wide ligand-receptor pair database curated for pharmacological interactions relevant for neuro-immune interactions. Our findings reveal a landscape of ligand-receptor interactions in the lung caused by SARS-CoV-2 viral infection and point to potential interventions to reduce the burden of neurogenic inflammation in COVID-19 pulmonary disease. In particular, our work highlights opportunities for clinical trials with existing or under development rheumatoid arthritis and other (e.g. CCL2, CCR5 or EGFR inhibitors) drugs to treat high risk or severe COVID-19 cases.

Learn More >

Cannabis for Chronic Pain: We Simply Don’t Know.

Learn More >

A prospective real-world analysis of erenumab in refractory chronic migraine.

Clinical trials have shown the safety and clinical superiority of erenumab compared to placebo in chronic migraine (CM). The aim of this analysis is to evaluate the effectiveness and tolerability of erenumab in a real-world setting in patients with refractory CM.

Learn More >

Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain.

Chronic pain affects a significant percentage of the United States population, and available pain medications like opioids have drawbacks that make long-term use untenable. Cannabinoids show promise in the management of pain, but long-term treatment of pain with cannabinoids has been challenging to implement in preclinical models. We developed a voluntary, gelatin oral self-administration paradigm that allowed male and female mice to consume ∆-tetrahydrocannabinol, cannabidiol, or morphine ad libitum. Mice stably consumed these gelatins over 3 weeks, with detectable serum levels. Using a real-time gelatin measurement system, we observed that mice consumed gelatin throughout the light and dark cycles, with animals consuming less THC-gelatin than the other gelatin groups. Consumption of all three gelatins reduced measures of allodynia in a chronic, neuropathic sciatic nerve injury model, but tolerance to morphine developed after 1 week while THC or CBD reduced allodynia over three weeks. Hyperalgesia gradually developed after sciatic nerve injury, and by the last day of testing, THC significantly reduced hyperalgesia, with a trend effect of CBD, and no effect of morphine. Mouse vocalizations were recorded throughout the experiment, and mice showed a large increase in ultrasonic, broadband clicks after sciatic nerve injury, which was reversed by THC, CBD, and morphine. This study demonstrates that mice voluntarily consume both cannabinoids and opioids via gelatin, and that cannabinoids provide long-term relief of chronic pain states. In addition, ultrasonic clicks may objectively represent mouse pain status and could be integrated into future pain models.

Learn More >

Statins and Neuropathic Pain: A Narrative Review.

The frequently prescribed drug class of statins have pleiotropic effects and have been implicated in neuropathic pain syndromes. This narrative review examines studies of statin-induced neuropathic pain which to date have been conducted only in animal models. However, the pathophysiology of diabetic neuropathy in humans may shed some light on the etiology of neuropathic pain. Statins have exhibited a paradoxical effect in that statins appear to reduce neuropathic pain in animals but have been associated with neuropathic pain in humans. While there are certain postulated mechanisms offering elucidation as to how statins might be associated with neuropathic pain, there is, as the American Heart Association stated, to date no definitive association between statins and neuropathic pain. Statins are important drugs that reduce cardiovascular risk factors and should be prescribed to appropriate patients with these risk factors but some of this population is also at elevated risk for neuropathic pain from other causes.

Learn More >

Evaluation of apremilast in chronic pruritus of unknown origin: A proof-of-concept, phase 2a, open-label, single-arm clinical trial.

Learn More >

Search