I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Neurophysiological and biomolecular effects of erenumab in chronic migraine: An open label study.

Anti-calcitonin gene-related peptide antibodies proved effective in the preventive treatment of chronic migraine. In this open label study, we aim to assess the effects of erenumab administration on neurophysiological and biomolecular profiles in a representative cohort of chronic migraine patients.

Learn More >

Assessment of the anti-allodynic efficacy of a glycine transporter 2 inhibitor relative to pregabalin and duloxetine in a rat model of prostate cancer-induced bone pain.

The pathobiology of prostate cancer-induced bone pain (PCIBP) is underpinned by both inflammatory and neuropathic components. Here, we used a rat model of PCIBP to assess the analgesic efficacy of a glycine transporter 2 (GlyT2) inhibitor (N-(6-((1,3-dihydroxypropan-2-yl)amino)-2-(dimethylamino)pyridin-3-yl)-3,5-dimethoxy-4-(4-(trifluoromethyl)phenoxy) benzamide) relative to two clinically available adjuvant drugs that are recommended for the relief of neuropathic pain, viz, pregabalin and duloxetine.

Learn More >

Efficacy and safety of abrocitinib in adults and adolescents with moderate-to-severe atopic dermatitis (JADE MONO-1): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial.

Abrocitinib, an oral selective Janus kinase 1 inhibitor, was effective and well tolerated in adults with moderate-to-severe atopic dermatitis in a phase 2b trial. We aimed to assess the efficacy and safety of abrocitinib monotherapy in adolescents and adults with moderate-to-severe atopic dermatitis.

Learn More >

The pharmacogenetics of opioid treatment for pain management.

Opioids are widely used as an analgesic for the treatment of moderate to severe pain. However, there are interindividual variabilities in opioid response. Current evidence suggests that these variabilities can be attributed to single nucleotide polymorphisms in genes involved in opioid pharmacodynamics and pharmacokinetics. Knowledge of these genetic factors through pharamacogenetic (PGx) testing can help clinicians to more consistently prescribe opioids that can provide patients with maximal clinical benefit and minimal risk of adverse effects.

Learn More >

Emerging drugs for the treatment of chronic pruritic diseases.

Chronic pruritus is non-histaminergic and mediated through a complex interplay of peripheral and central immune and neural pathways. Significant developments in the understanding of chronic pruritus have emerged and paved the way for new, emerging therapies.

Learn More >

Cholesterol regulates cannabinoid analgesia through glycine receptors.

Cholesterol plays vital roles in many central physiological and pathological processes. As a key component in the cell membrane, cholesterol can regulate a variety of ion channels, including ligand-gated ion channels (LGICs). However, relatively little is known about the molecular detail and in vivo consequence of cholesterol-LGIC interaction. Here, we reveal that membrane cholesterol depletion significantly inhibits the potentiating effects of dehydroxylcannabidiol (DH-CBD) on glycine-activated currents (I) in HEK 293T cells expressing α1/α3 glycine receptors (GlyRs). Simvastatin considerably decreases cholesterol levels and DH-CBD-induced potentiation of I in the spinal cord of mice. Simvastatin also significantly decreases DH-CBD analgesia in acute and chronic pain of mice. The cholesterol levels in the dorsal horn of spinal cord, measured by mass spectrometry imaging, are specifically correlated with cannabinoid potentiation of spinal GlyRs and cannabinoid-induced analgesia. These findings suggest that spinal cholesterol is critical for the efficacy of glycinergic cannabinoid-induced analgesia.

Learn More >

An update on acute and preventive treatments for migraine in children and adolescents.

Migraine is diagnosed in 5% of children in the United States by the age of ten. The estimated prevalence for children with migraine is 10%. It has become increasingly important to diagnose children and adolescents with migraine as they are disabling. Children are more likely to miss school and activities due to headaches compared to other children. In addition, poor management and treatment in children and adolescents could potentially lead to an increase in migraine in adults.

Learn More >

Pain Freedom at 2 to 8 Hours With Lasmiditan: A Comparison With Rimegepant and Ubrogepant.

Learn More >

Central Nervous System Targets: Supraspinal Mechanisms of Analgesia.

While the acute sensation of pain is protective, signaling the presence of actual or potential bodily harm, its persistence is unpleasant. When pain becomes chronic, it has limited evolutionarily advantage. Despite the differing nature of acute and chronic pain, a common theme is that sufferers seek pain relief. The possibility to medicate pain types as varied as a toothache or postsurgical pain reflects the diverse range of mechanism(s) by which pain-relieving "analgesic" therapies may reduce, eliminate, or prevent pain. Systemic application of an analgesic able to cross the blood-brain barrier can result in pain modulation via interaction with targets at different sites in the central nervous system. A so-called supraspinal mechanism of action indicates manipulation of a brain-defined circuitry. Pre-clinical studies demonstrate that, according to the brain circuitry targeted, varying therapeutic pain-relieving effects may be observed that relate to an impact on, for example, sensory and/or affective qualities of pain. In many cases, this translates to the clinic. Regardless of the brain circuitry manipulated, modulation of brain processing often directly impacts multiple aspects of nociceptive transmission, including spinal neuronal signaling. Consideration of supraspinal mechanisms of analgesia and ensuing pain relief must take into account nonbrain-mediated effects; therefore, in this review, the supraspinally mediated analgesic actions of opioidergic, anti-convulsant, and anti-depressant drugs are discussed. The persistence of poor treatment outcomes and/or side effect profiles of currently used analgesics highlight the need for the development of novel therapeutics or more precise use of available agents. Fully uncovering the complex biology of nociception, as well as currently used analgesic mechanism(s) and site(s) of action, will expedite this process.

Learn More >

Gene coexpression patterns predict opiate-induced brain-state transitions.

Opioid addiction is a chronic, relapsing disorder associated with persistent changes in brain plasticity. Reconfiguration of neuronal connectivity may explain heightened abuse liability in individuals with a history of chronic drug exposure. To characterize network-level changes in neuronal activity induced by chronic opiate exposure, we compared FOS expression in mice that are morphine-naïve, morphine-dependent, or have undergone 4 wk of withdrawal from chronic morphine exposure, relative to saline-exposed controls. Pairwise interregional correlations in FOS expression data were used to construct network models that reveal a persistent reduction in connectivity strength following opiate dependence. Further, we demonstrate that basal gene expression patterns are predictive of changes in FOS correlation networks in the morphine-dependent state. Finally, we determine that regions of the hippocampus, striatum, and midbrain are most influential in driving transitions between opiate-naïve and opiate-dependent brain states using a control theoretic approach. This study provides a framework for predicting the influence of specific therapeutic interventions on the state of the opiate-dependent brain.

Learn More >

Search