I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Predicting the response to a triptan in migraine using deep attack phenotyping: A feasibility study.

Triptans, specific symptomatic medications for migraine, are not effective in a proportion of patients, or in all attacks, hence the importance of identifying predictors of response. Our aim was to investigate the association between the efficacy of oral frovatriptan 2.5 mg and clinical characteristics of migraine attacks.

Learn More >

Serum CGRP, VIP, and PACAP usefulness in migraine: a case-control study in chronic migraine patients in real clinical practice.

Calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypetide-38 (PACAP-38) have relevant roles in migraine pathophysiology. Their serum levels have been proposed as biomarkers for migraine. Our aim was to assess their diagnostic value in real clinical practice in a cohort of chronic migraine (CM), episodic migraine (EM) and healthy controls (HC). We recruited subjects with CM, EM and HC at two medical centers. Blood samples were drawn under fasting conditions in the interictal period, immediately centrifuged and stored at – 80 ºC. Serum levels were determined by ELISA. Neuropeptide levels, the effect of preventatives, correlations with clinical and demographic variables, and their diagnostic value were studied among clinical categories. 296 age- and sex-matched subjects (101 CM, 98 EM and 97 HC) were included. All three neuropeptide serum levels were higher in CM [median and IQ for CGRP = 18.023 pg/ml (14.4-24.7); VIP = 121.732 pg/ml (48.72-186.72) and PACAP = 204.931 pg/ml (101.08-597.64)] vs EM [CGRP = 14.659 pg/ml (10.29-17.45); VIP = 75.603 pg/ml (28.722-107.10); and PACAP = 94.992 pg/ml (65.77-128.48)] and vs HC [CGRP = 13.988 pg/ml (10.095-17.87); VIP = 84.685 pg/ml (35.32-99.79), and PACAP = 103.142 pg/ml (59.42-123.97)]. Using multinomial modeling, only VIP (OR 1.011, 95% CI  1.003-1.018, p = 0.005) and PACAP (OR 1.003, 95% CI 1.001-1.005, p = 0.002) increased the risk for CM, but not for EM. CGRP did not predict CM or EM. This model could correctly classify only 62/101 (61.38%) of CM, 75/98 (76.53%) of EM, and 5/97 (4.12%) of HC [globally 147/296 (49.8%)]. Individually, PACAP performed the best for classifying clinical categories [global accuracy 150/296 (50.67%)]. In CM, neuropeptide levels were higher in those OnaBT-treated than in no-treated patients. Although interictal serum CGRP and VIP were higher in CM than both EM or HC, their utility to discriminate migraine categories was low. Contrary to other studies, PACAP serum levels were also higher in CM than in EM or HC and had more discriminative capability to distinguish CM from EM and HC. Further investigation is needed for determination technique standardization.

Learn More >

All-Cause and Overdose Mortality Risk Among People Prescribed Opioids: A Systematic Review and Meta-analysis.

To estimate all-cause and overdose crude mortality rates and standardized mortality ratios among people prescribed opioids for chronic noncancer pain and risk of overdose death in this population relative to people with similar clinical profiles but not prescribed opioids.

Learn More >

Deep proteomics and phosphoproteomics reveal novel biological pathways perturbed by morphine, morphine-3-glucuronide and morphine-6-glucuronide in human astrocytes.

Tolerance and hyperalgesia associated with chronic exposure to morphine are major limitations in the clinical management of chronic pain. At a cellular level, neuronal signaling can in part account for these undesired side effects, but unknown mechanisms mediated by central nervous system glial cells are likely also involved. Here we applied data-independent acquisition mass spectrometry to perform a deep proteome and phosphoproteome analysis of how human astrocytes responds to opioid stimulation. We unveil time- and dose-dependent effects induced by morphine and its major active metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide that converging on activation of mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. We also find that especially longer exposure to M3G leads to significant dysregulation of biological pathways linked to extracellular matrix organization, antigen presentation, cell adhesion, and glutamate homeostasis, which are crucial for neuron- and leukocyte-astrocyte interactions.

Learn More >

Functional impairment and disability among patients with migraine: evaluation of galcanezumab in a long-term, open-label study.

Migraine can negatively impact patient functioning and quality of life. Here, we report the effects of galcanezumab (GMB), a humanized monoclonal antibody that binds to calcitonin gene-related peptide, on patient-reported outcome (PRO) measures in migraine.

Learn More >

Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels.

. Thermo transient receptor potential (thermoTRP) channels are some of the most intensely pursued therapeutic targets of the past decade. They are considered promising targets of numerous diseases including chronic pain and cancer. Modulators of these proteins, in particular TRPV1-4, TRPM8 and TRPA1, have reached clinical development, but none have been approved for clinical practice yet.

Learn More >

ROR2 blockade as a therapy for osteoarthritis.

Osteoarthritis is characterized by the loss of the articular cartilage, bone remodeling, pain, and disability. No pharmacological intervention can currently halt progression of osteoarthritis. Here, we show that blocking receptor tyrosine kinase-like orphan receptor 2 (ROR2) improves cartilage integrity and pain in osteoarthritis models by inhibiting yes-associated protein (YAP) signaling. ROR2 was up-regulated in the cartilage in response to inflammatory cytokines and mechanical stress. The main ligand for ROR2, WNT5A, and the targets YAP and connective tissue growth factor were up-regulated in osteoarthritis in humans. In vitro, ROR2 overexpression inhibited chondrocytic differentiation. Conversely, ROR2 blockade triggered chondrogenic differentiation of C3H10T/ cells and suppressed the expression of the cartilage-degrading enzymes a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. The chondrogenic effect of ROR2 blockade in the cartilage was independent of WNT signaling and was mediated by down-regulation of YAP signaling. ROR2 signaling induced G protein and Rho-dependent nuclear accumulation of YAP, and YAP inhibition was required but not sufficient for ROR2 blockade-induced chondrogenesis. ROR2 silencing protected mice from instability-induced osteoarthritis with improved structural outcomes, sustained pain relief, and without apparent side effects or organ toxicity. Last, ROR2 silencing in human articular chondrocytes transplanted in nude mice led to the formation of cartilage organoids with more and better differentiated extracellular matrix, suggesting that the anabolic effect of ROR2 blockade is conserved in humans. Thus, ROR2 blockade is efficacious and well tolerated in preclinical animal models of osteoarthritis.

Learn More >

Persistent Activity of Metabotropic Glutamate Receptor 5 in the Periaqueductal Gray Constrains Emergence of Chronic Neuropathic Pain.

Pain sensation is powerfully modulated by signal processing in the brain, and pain becomes chronic with the dysfunction of the pain modulatory system; however, the underlying mechanisms are unclear. We found that the metabotropic glutamate receptor 5 (mGluR5) in the periaqueductal gray (PAG), the key area of endogenous pain modulation, is persistently active in normal conditions to maintain an appropriate sensory perception. In the neuropathic pain condition, Homer1a, an activity-dependent immediate early gene product, disrupted the persistent mGluR5 activity resulting in chronic pain. Remarkably a single-time blockage of the mGluR5 resulted in chronic neuropathic pain-like symptoms even in the absence of nerve injury. The decline of mGluR5 activity induced the pain modulatory dysfunction with a profound reduction of excitability of PAG neurons. These findings uncover the role of the persistent mGluR5 activity in vivo and provide new insight into how pain becomes chronic with the maladaptive coping of the PAG to pain sensation.

Learn More >

Changes in patient functioning and disability: results from a phase 3, double-blind, randomized, placebo-controlled clinical trial evaluating galcanezumab for chronic migraine prevention (REGAIN).

To evaluate secondary outcomes including changes in functioning and disability associated with galcanezumab, a humanized monoclonal antibody to calcitonin gene-related peptide, in patients with chronic migraine.

Learn More >

Morphine and Fentanyl Repeated Administration Induces Different Levels of NLRP3-Dependent Pyroptosis in the Dorsal Raphe Nucleus of Male Rats via Cell-Specific Activation of TLR4 and Opioid Receptors.

Morphine promotes neuroinflammation after NOD-like receptor protein 3 (NLRP3) oligomerization in glial cells, but the capacity of other opioids to induce neuroinflammation and its relationship to the development of analgesic tolerance is unknown. We studied the effects of morphine and fentanyl on NLRP3 inflammasome activation in glial and neuronal cells in the dorsal raphe nucleus (DRN), a region involved in pain regulation. Male Wistar rats received i.p. injections of morphine (10 mg/kg) or fentanyl (0.1 mg/kg) 3 × daily for 7 days and were tested for nociception. Two hours after the last (19th) administration, we analyzed NLRP3 oligomerization, caspase-1 activation and gasdermin D-N (GSDMD-N) expression in microglia (CD11b positive cells), astrocytes (GFAP-positive cells) and neurons (NeuN-positive cells). Tolerance developed to both opioids, but only fentanyl produced hyperalgesia. Morphine and fentanyl activated NLRP3 inflammasome in astrocytes and serotonergic (TPH-2-positive) neurons, but fentanyl effects were more pronounced. Both opioids increased GFAP and CD11b immunoreactivity, caspase-1 and GSDMD activation, indicating pyroptotic cell death. The opioid receptor antagonist (-)-naloxone, but not the TLR4 receptor antagonist (+)-naloxone, prevented microglia activation and NLRP3 oligomerization. Only (+)-naloxone prevented astrocytes' activation. The anti-inflammatory agent minocycline and the NLRP3 inhibitor MCC950 delayed tolerance to morphine and fentanyl antinociception and prevented fentanyl-induced hyperalgesia. MCC950 also prevented opioid-induced NLRP3 oligomerization. In conclusion, morphine and fentanyl differentially induce cell-specific activation of NLRP3 inflammasome and pyroptosis in the DRN through TLR4 receptors in astrocytes and through opioid receptors in neurons, indicating that neuroinflammation is involved in opioid-induced analgesia and fentanyl-induced hyperalgesia after repeated administrations.

Learn More >

Search