I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Tricyclic antidepressants for the treatment of chronic pruritus.

Learn More >

Computational and Functional Mapping of Human and Rat α6β4 Nicotinic Acetylcholine Receptors Reveals Species-Specific Ligand-Binding Motifs.

Nicotinic acetylcholine receptors (nAChRs) are pharmacological targets for the treatment of neuropathic pain, and the α6β4 subtype has been identified as particularly promising. Rat α6β4 nAChRs are less sensitive to some ligands than the human homologue potentially complicating the use of rodent α6β4 receptors for screening therapeutic compounds. We used molecular dynamics simulations coupled with functional assays to study the interaction between α-conotoxin PeIA and α6β4 nAChRs and to identify key ligand-receptor interactions that contribute to species differences in α-conotoxin potency. Our results show that human and rat α6β4 nAChRs have distinct ligand-binding motifs and show markedly different sensitivities to α-conotoxins. These studies facilitated the creation of PeIA-5667, a peptide that shows 270-fold higher potency for rat α6β4 nAChRs over native PeIA and similar potency for the human homologue. Our results may inform the design of therapeutic ligands that target α6β4 nAChRs for the treatment of neuropathic pain.

Learn More >

Update on Calcitonin Gene-Related Peptide Antagonism in the Treatment of Migraine.

The discovery of calcitonin gene-related peptide (CGRP) and its role in migraine has promoted a new era in migraine treatment: CGRP antagonism. Two classes of medications are currently available: small molecules targeting the CGRP receptor and monoclonal antibodies targeting the CGRP receptor or CGRP ligand. The revolution of these medications is represented by blurring the borders between acute and preventive treatments, episodic and chronic migraine, naïve and refractory patients and even between migraine and other headache disorders.

Learn More >

Selective targeting of peripheral cannabinoid receptors prevents behavioral symptoms and sensitization of trigeminal neurons in mouse models of migraine and medication overuse headache.

Migraine affects ∼15% of the world's population greatly diminishing their quality of life. Current preventative treatments are effective in only a subset of migraine patients, and while cannabinoids appear beneficial in alleviating migraine symptoms, central nervous system (CNS) side effects limit their widespread use. We developed peripherally-restricted cannabinoids (PRCBs) that relieve chronic pain symptoms of cancer and neuropathies, without appreciable CNS side effects or tolerance development. Here we determined PRCB effectiveness in alleviating hypersensitivity symptoms in mouse models of migraine and medication overuse headache (MOH). Chronic glyceryl trinitrate (GTN, 10 mg/kg) administration led to increased sensitivity to mechanical stimuli, and increased expression of phosphorylated protein kinase A (p-PKA), neuronal nitric oxide synthase (nNOS), and transient receptor potential ankyrin 1 (TRPA1) proteins in trigeminal ganglia. PRCB pretreatment, but not posttreatment, prevented behavioral and biochemical correlates of GTN-induced sensitization. Low pH- and allyl isothiocyanate-activated currents in acutely isolated trigeminal neurons were reversibly attenuated by PRCB application. Chronic GTN treatment significantly enhanced these currents. Chronic sumatriptan treatment also led to development of allodynia to mechanical and cold stimuli which was slowly reversible after sumatriptan discontinuation. Subsequent challenge with a previously ineffective low-dose GTN (0.1-0.3 mg/kg) revealed latent behavioral sensitization and increased expression of p-PKA, nNOS, and TRPA1 proteins in trigeminal ganglia. PRCB pretreatment prevented all behavioral and biochemical correlates of allodynia and latent sensitization. Importantly, chronic PRCB treatment alone did not produce any behavioral or biochemical signs of sensitization. These data validate peripheral cannabinoid receptors as potential therapeutic targets in migraine and MOH.

Learn More >

The Benefits and Harms of Botulinum Toxin-A in the Treatment of Chronic Pelvic Pain Syndromes: A Systematic Review by the European Association of Urology Chronic Pelvic Pain Panel.

Patients with chronic pelvic pain syndrome (CPPS) may have pain refractory to conventional management strategies. Botulinum toxin A (BTX-A) is a potential therapeutic option.

Learn More >

Donepezil attenuates the development of morphine tolerance in rats with cancer-induced bone pain: the role of cortical N-methyl-D-aspartate receptors.

Cancer-induced bone pain (CIBP), which is associated with poor quality of life, is most commonly treated using opioids. However, long-term use of morphine for analgesia induces tolerance and can diminish the treatment's effectiveness. The mechanisms that underlie morphine tolerance have been reported to be related to the inflammation of the nervous system and hyperactivation of N-methyl-D-aspartate receptors (NMDARs). Donepezil is an anti-inflammatory and neuroprotective drug that is thought to alleviate morphine tolerance. In this study, we aimed to investigate the effect of three different dosages of donepezil (1, 1.5 and 2 mg/kg) on morphine tolerance in rats with CIBP, and the possible involvement of donepezil-mediated NMDAR subunit 1 (NR1). We found that donepezil can prolong the analgesic efficacy of morphine and delay the development of chronic morphine tolerance. Furthermore, continuous morphine injection increased the expression of NR1, and this was suppressed by co-administration with donepezil using both western blotting and immunofluorescence. Our findings demonstrate that donepezil has the potential to attenuate morphine tolerance, possibly by inhibiting NR1 activity in the cortex.

Learn More >

Multitargeting the sleep-pain interaction with pharmacological approaches: A narrative review with suggestions on new avenues of investigation.

The multimorbidity formed by sleep disturbances and pain conditions is highly prevalent and has a significant impact in global health and in the socioeconomic system. Although different approaches have been directed toward its management, evidence regarding an optimal treatment is lacking, and pharmacological options are often preferred. Health professionals (e.g., pain and sleep clinicians) tend to focus on their respective expertise, targeting a single symptom with a single drug. This may increase polypharmacy and the risk of drug interactions, adverse events, and mortality. Hence, the use of medications that can directly or indirectly improve sleep, pain, and other possible accompanying conditions without exacerbating them becomes especially relevant. The objectives of this comprehensive review are to: a) describe the beneficial or deleterious effects that some commonly used medications to manage pain have on sleep and sleep disorders; and b) describe the beneficial or deleterious effects that frequently prescribed medications for sleep may have on pain. Moreover, medications targeting some specific sleep-pain interactions will be suggested and future directions for improving sleep and alleviating pain of these patients will be provided with clinical and research perspectives.

Learn More >

The µ-δ opioid heteromer masks Latent Pain Sensitization in neuropathic and inflammatory pain in male and female mice.

The episodic nature of chronic pain can be studied in the rodent model of latent pain sensitization. After remission, central sensitization is opposed by activation of opioid receptors. At the behavioral level, latent pain sensitization is unmasked when pain hypersensitivity is reinstated by opioid receptor (OR) antagonism. Previous studies have focused on inflammatory pain and male rodents. Whether latent pain sensitization occurs in models of chemotherapy-induced neuropathic pain in female and male mice is unknown. The first aim of this study was to investigate whether μ- and δ-OR suppress latent pain sensitization in our model of chemotherapy-induced neuropathic pain in both sexes. Mounting evidence suggests that μ-and δ-ORs form a heteromer and that the heteromer modulates pain sensitivity. Potential implications of the μ-δ OR heteromer in latent pain sensitization have not been fully explored due to a lack of tools to effectively modulate the heteromer. To specifically target the μ-δ OR heteromer, we used a specific interfering peptide blocking the heteromerization. The second aim of this study was to investigate whether disruption of the μ-δOR heteromer, after remission, reinstates pain hypersensitivity. After remission from cisplatin-induced neuropathic pain, antagonism of µOR and δOR reinstates pain hypersensitivity in both sexes. After remission from cisplatin-induced neuropathic pain and postoperative pain, disruption of the μ-δOR heteromer reinstates pain hypersensitivity in both sexes. Taken together our findings suggest that the μ-δOR heteromer plays a crucial role in remission in various pain models and may represent a novel therapeutic target to prevent the relapse to pain and the transition to chronic pain.

Learn More >

A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes.

G protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal signaling of the neurokinin 1 receptor (NKR) mediates nociception, as demonstrated in models of acute and neuropathic pain. An NKR antagonist, Spantide I (Span), conjugated to cholestanol (Span-Chol), accumulates in endosomes, inhibits endosomal NKR signaling, and causes prolonged anti-nociception. However, the extent to which the Chol-anchor influences long-term location and activity is poorly understood. Herein, we used fluorescent correlation spectroscopy and targeted biosensors to characterize Span-Chol over time. The Chol-anchor increased local concentration of probe at the plasma membrane. Over time we observed an increase in NKR binding affinity and more potent inhibition of NKR-mediated calcium signaling. Span-Chol, but not Span, caused a persistent decrease in NKR recruitment of β-arrestin and receptor internalization to early endosomes. Using targeted biosensors, we mapped the relative inhibition of NKR signaling as the receptor moved into the cell. Span selectively inhibited cell surface signaling, whereas Span-Chol partitioned into endosomal membranes and blocked endosomal signaling. In a preclinical model of pain, Span-Chol caused prolonged antinociception (>9 h), which is attributable to a three-pronged mechanism of action: increased local concentration at membranes, a prolonged decrease in NKR endocytosis, and persistent inhibition of signaling from endosomes. Identifying the mechanisms that contribute to the increased preclinical efficacy of lipid-anchored NKR antagonists is an important step toward understanding how we can effectively target intracellular GPCRs in disease.

Learn More >

Intrathecal Administration of an Anti-nociceptive Non-CpG Oligodeoxynucleotide Reduces Glial Activation and Central Sensitization.

Inflammatory pain associates with spinal glial activation and central sensitization. Systemic administration of IMT504, a non-CpG oligodeoxynucleotide originally designed as an immunomodulator, exerts remarkable anti-allodynic effects in rats with complete Freund´s adjuvant (CFA)-induced hindpaw inflammation. However, the anti-nociceptive mechanisms of IMT504 remain unknown. Here we evaluated whether IMT504 blocks inflammatory pain-like behavior by modulation of spinal glia and central sensitization. The study was performed in Sprague Dawley rats with intraplantar CFA, and a single lumbosacral intrathecal (i.t.) administration of IMT504 or vehicle was chosen to address if changes in glial activation and spinal sensitization relate to the pain-like behavior reducing effects of the ODN. Naïve rats were also included. Von Frey and Randall-Selitto tests, respectively, exposed significant reductions in allodynia and mechanical hypersensitivity, lasting at least 24 h after i.t. IMT504. Analysis of electromyographic responses to electrical stimulation of C fibers showed progressive reductions in wind-up responses. Accordingly, IMT504 significantly downregulated spinal glial activation, as shown by reductions in the protein expression of glial fibrillary acidic protein, CD11b/c, Toll-like receptor 4 (TLR4) and the phosphorylated p65 subunit of NFκB, evaluated by immunohistochemistry and western blot. In vitro experiments using early post-natal cortical glial cultures provided further support to in vivo data and demonstrated IMT504 internalization into microglia and astrocytes. Altogether, our study provides new evidence on the central mechanisms of anti-nociception by IMT504 upon intrathecal application, and further supports its value as a novel anti-inflammatory ODN with actions upon glial cells and the TLR4/NFκB pathway. Intrathecal administration of the non-CpG ODN IMT504 fully blocks CFA-induced mechanical allodynia and hypersensitivity, in association with reduced spinal sensitization. Administration of the ODN also results in downregulated gliosis and reduced TLR4-NF-κB pathway activation. IMT504 uptake into astrocytes and microglia support the concept of direct modulation of CFA-induced glial activation.

Learn More >

Search