I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Lasmiditan efficacy in migraine attacks with mild vs. moderate or severe pain.

To evaluate the efficacy of lasmiditan (LTN) in treating migraine attacks of mild vs. moderate or severe pain intensity.

Learn More >

Agonist that activates the µ-opioid receptor in acidified microenvironments inhibits colitis pain without side effects.

The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues.

Learn More >

Inhibitory effect of intrathecally administered AM404, an endocannabinoid reuptake inhibitor, on neuropathic pain in a rat chronic constriction injury model.

The endocannabinoid system modulates a wide variety of pain conditions. Systemically administered AM404, an endocannabinoid reuptake inhibitor, exerts antinociceptive effects via activation of the endocannabinoid system. However, the mechanism and site of AM404 action are not fully understood. Here, we explored the effect of AM404 on neuropathic pain at the site of the spinal cord.

Learn More >

Safety and tolerability of eptinezumab in patients with migraine: a pooled analysis of 5 clinical trials.

The humanized anti-CGRP monoclonal antibody eptinezumab has been evaluated in five large-scale clinical trials conducted in patients with migraine. This integrated analysis was conducted to evaluate the comprehensive safety and tolerability of eptinezumab in patients with migraine across these studies.

Learn More >

A Role for Transmembrane Protein 16C/Slack Impairment in Excitatory Nociceptive Synaptic Plasticity in the Pathogenesis of Remifentanil-induced Hyperalgesia in Rats.

Remifentanil is widely used to control intraoperative pain. However, its analgesic effect is limited by the generation of postoperative hyperalgesia. In this study, we investigated whether the impairment of transmembrane protein 16C (TMEM16C)/Slack is required for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) activation in remifentanil-induced postoperative hyperalgesia. Remifentanil anesthesia reduced the paw withdrawal threshold from 2 h to 48 h postoperatively, with a decrease in the expression of TMEM16C and Slack in the dorsal root ganglia (DRG) and spinal cord. Knockdown of TMEM16C in the DRG reduced the expression of Slack and elevated the basal peripheral sensitivity and AMPAR expression and function. Overexpression of TMEM16C in the DRG impaired remifentanil-induced ERK1/2 phosphorylation and behavioral hyperalgesia. AMPAR-mediated current and neuronal excitability were downregulated by TMEM16C overexpression in the spinal cord. Taken together, these findings suggest that TMEM16C/Slack regulation of excitatory synaptic plasticity via GluA1-containing AMPARs is critical in the pathogenesis of remifentanil-induced postoperative hyperalgesia in rats.

Learn More >

Mechanisms, diagnosis, prevention and management of perioperative opioid-induced hyperalgesia.

Opioid-induced hyperalgesia (OIH) occurs when opioids paradoxically enhance the pain they are prescribed to ameliorate. To address a lack of perioperative awareness, we present an educational review of clinically relevant aspects of the disorder. Although the mechanisms of OIH are thought to primarily involve medullary descending pathways, it is likely multifactorial with several relevant therapeutic targets. We provide a suggested clinical definition and directions for clinical differentiation of OIH from other diagnoses, as this may be confusing but is germane to appropriate management. Finally, we discuss prevention including patient education and analgesic management choices. As prevention may serve as the best treatment, patient risk factors, opioid mitigation, and both pharmacologic and non-pharmacologic strategies are discussed.

Learn More >

Contribution of the µ opioid receptor and enkephalin to the antinociceptive actions of endomorphin-1 analogs with unnatural amino acid modifications in the spinal cord.

Endomorphin analogs containing unnatural amino acids have demonstrated potent analgesic effects in our previous studies. In the present study, the differences in antinociception and the mechanisms thereof for analogs 1-3 administered intracerebroventricularly and intrathecally were explored. All analogs at different routes of administration produced potent analgesia compared to the parent peptide endomorphin-1. Multiple antagonists and antibodies were used to explore the mechanisms of action of these analogs, and it was inferred that analogs 1-3 stimulated the µ opioid receptor to induce antinociception. Moreover, the antibody data suggested that analog 2 may induce the release of immunoreactive [Leu]-enkephaline and [Met]-enkephaline to produce a secondary component of antinociception at the spinal level and analog 3 may stimulate the the release of immunoreactive [Met]-enkephaline at the spinal level. Finally, analogs 2 and 3 produced no acute tolerance in the spinal cord. We hypothesize that the unique characteristics of the endomorphin analogs result from their capacities to stimulate the release of endogenous antinociceptive substances.

Learn More >

Early Management of OnabotulinumtoxinA Treatment in Chronic Migraine: Insights from a Real-Life European Multicenter Study.

OnabotulinumtoxinA (BT-A) quarterly was the first treatment approved specifically for chronic migraine (CM). It is unclear whether three cycles are better than two to assess early BT-A response.

Learn More >

Amylin analog pramlintide induces migraine-like attacks in patients.

Migraine is a prevalent and disabling neurological disease. Its genesis is poorly understood and there remains unmet clinical need. We aimed to identify mechanisms and thus novel therapeutic targets for migraine using human models of migraine and translational models in animals, with emphasis on amylin, a close relative of calcitonin gene-related peptide (CGRP).

Learn More >

Epigenetics Involvement in Oxaliplatin-Induced Potassium Channel Transcriptional Downregulation and Hypersensitivity.

Peripheral neuropathy is the most frequent dose-limiting adverse effect of oxaliplatin. Acute pain symptoms that are induced or exacerbated by cold occur in almost all patients immediately following the first infusions. Evidence has shown that oxaliplatin causes ion channel expression modulations in dorsal root ganglia neurons, which are thought to contribute to peripheral hypersensitivity. Most dysregulated genes encode ion channels involved in cold and mechanical perception, noteworthy members of a sub-group of potassium channels of the K2P family, TREK and TRAAK. Downregulation of these K2P channels has been identified as an important tuner of acute oxaliplatin-induced hypersensitivity. We investigated the molecular mechanisms underlying this peripheral dysregulation in a murine model of neuropathic pain triggered by a single oxaliplatin administration. We found that oxaliplatin-mediated TREK-TRAAK downregulation, as well as downregulation of other K channels of the K2P and Kv families, involves a transcription factor known as the neuron-restrictive silencer factor (NRSF) and its epigenetic co-repressors histone deacetylases (HDACs). NRSF knockdown was able to prevent most of these K channel mRNA downregulation in mice dorsal root ganglion neurons as well as oxaliplatin-induced acute cold and mechanical hypersensitivity. Interestingly, pharmacological inhibition of class I HDAC reproduces the antinociceptive effects of NRSF knockdown and leads to an increased K channel expression in oxaliplatin-treated mice.

Learn More >

Search