I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Opioid and gabapentinoid prescriptions in England from 2015 to 2020.

Concerns gradually arose about misuse of gabapentinoids (gabapentin and pregabalin), especially when used in combination with opioids. Because it can be a driver of usage, trends in prescribing habits may be interesting to analyse. The aim of this study is to examine the evolution of prescriptions of opioids and gabapentinoids in England from 2015 to 2020 at a regional level.

Learn More >

Soluble mediators in the function of the epidermal-immune-neuro unit in the skin.

Skin is the largest, environmentally exposed (barrier) organ, capable of integrating various signals into effective defensive responses. The functional significance of interactions among the epidermis and the immune and nervous systems in regulating and maintaining skin barrier function is only now becoming recognized in relation to skin pathophysiology. This review focuses on newly described pathways that involve soluble mediator-mediated crosstalk between these compartments. Dysregulation of these connections can lead to chronic inflammatory diseases and/or pathologic conditions associated with chronic pain or itch.

Learn More >

Buprenorphine as a Treatment for Major Depression and Opioid Use Disorder.

Rates of major depressive disorder (MDD) are disproportionally high in subjects with opioid use disorder (OUD) relative to the general population. MDD is often more severe in OUD patients, leading to compliance issues with maintenance therapies and poor outcomes. A growing body of literature suggests that endogenous opioid system dysregulation may play a role in the emergence of MDD. Buprenorphine, a mixed opioid receptor agonist/antagonist approved for the treatment of OUD and chronic pain, may have potential as a novel therapeutic for MDD, especially for patients with a dual diagnosis of MDD and OUD. This paper presents a comprehensive review of papers relevant to the assessment of buprenorphine as a treatment for MDD, OUD, and/or suicide compiled using electronic databases per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The principal goal of this literature review was to compile the clinical studies that have interrogated the antidepressant activity of buprenorphine in opioid naïve MDD patients and OUD patients with comorbid MDD. Evidence supporting buprenorphine's superiority over methadone for treating comorbid OUD and MDD was also considered. Finally, recent evidence for the ability of buprenorphine to alleviate suicidal ideation in both opioid-naïve patients and opioid-experienced patients was evaluated. Synthesizing all of this information, buprenorphine emerges as a potentially effective therapeutic for the dual purposes of treating MDD and OUD.

Learn More >

Secondary damage and neuroinflammation in the spinal dorsal horn mediate post-thalamic hemorrhagic stroke pain hypersensitivity: SDF1-CXCR4 signaling mediation.

Central post-stroke pain (CPSP) is an intractable neuropathic pain, which can be caused by primary lesion of central somatosensory system. It is also a common sequelae of the thalamic hemorrhagic stroke (THS). So far, the underlying mechanisms of CPSP remain largely unknown. Our previous studies have demonstrated that SDF1-CXCR4 signaling in the hemorrhagic region contributes to the maintenance of the THS pain hypersensitivity mediation of the thalamic neuroinflammation. But whether the spinal dorsal horn, an initial point of spinothalamic tract (STT), suffers from retrograde axonal degeneration from the THS region is still unknown. In this study, neuronal degeneration and loss in the spinal dorsal horn were detected 7 days after the THS caused by intra-thalamic collagenase (ITC) injection by immunohistochemistry, TUNEL staining, electron microscopy, and extracellular multi-electrode array (MEA) recordings, suggesting the occurrence of secondary apoptosis and death of the STT projecting neuronal cell bodies following primary THS retrograde axonal degeneration. This retrograde degeneration was accompanied by secondary neuroinflammation characterized by an activation of microglial and astrocytic cells and upregulation of SDF1-CXCR4 signaling in the spinal dorsal horn. As a consequence, central sensitization was detected by extracellular MEA recordings of the spinal dorsal horn neurons, characterized by hyperexcitability of both wide dynamic range and nociceptive specific neurons to suprathreshold mechanical stimuli. Finally, it was shown that suppression of spinal neuroinflammation by intrathecal administration of inhibitors of microglia (minocycline) and astrocytes (fluorocitrate) and antagonist of CXCR4 (AMD3100) could block the increase in expression levels of Iba-1, GFAP, SDF1, and CXCR4 proteins in the dorsal spinal cord and ameliorate the THS-induced bilateral mechanical pain hypersensitivity, implicating that, besides the primary damage at the thalamus, spinal secondary damage and neuroinflammation also play the important roles in maintaining the central post-THS pain hypersensitivity. In conclusion, secondary neuronal death and neuroinflammation in the spinal dorsal horn can be induced by primary thalamic neural damage retrograde axonal degeneration process. SDF1-CXCR4 signaling is involved in the mediation of secondary spinal neuroinflammation and THS pain hypersensitivity. This finding would provide a new therapeutic target for treatment of CPSP at the spinal level.

Learn More >

Dexmedetomidine Alleviates Neuropathic Pain via the TRPC6-p38 MAPK Pathway in the Dorsal Root Ganglia of Rats.

Neuropathic pain is a chronic intractable disease characterized by allodynia and hyperalgesia. Effective treatments are unavailable because of the complicated mechanisms of neuropathic pain. Transient receptor potential canonical 6 (TRPC6) is a nonselective calcium (Ca)-channel protein related to hyperalgesia. Dexmedetomidine (Dex) is an alpha-2 (α2) adrenoreceptor agonist that mediates intracellular Ca levels to alleviate pain. However, the relationship between TRPC6 and Dex is currently unclear. We speculated that the α2 receptor agonist would be closely linked to the TRPC6 channel. We aimed to investigate whether Dex relieves neuropathic pain by the TRPC6 pathway in the dorsal root ganglia (DRG).

Learn More >

An LPAR -antagonist that reduces nociception and increases pruriception.

The G-protein coupled receptor LPAR plays a prominent role in LPA-mediated pain and itch signaling. In this study we focus on the LPAR-antagonist compound 3 (cpd3) and its ability to affect pain and itch signaling, both and .

Learn More >

The κ-Opioid Receptor Agonist U50488H Ameliorates Neuropathic Pain Through the Ca/CaMKII/CREB Pathway in Rats.

To observe the ameliorative effect of kappa opioid receptor (KOR) agonist on rats with neuropathic pain (NP) and investigate the mechanism of action of the calcium ion (Ca)/calcium/calmodulin-dependent protein kinase II (CaMKII)/cyclic AMP response element-binding protein (CREB) pathway.

Learn More >

Modulation of Neuropathic Pain by Glial Regulation in the Insular Cortex of Rats.

The insular cortex (IC) is known to process pain information. However, analgesic effects of glial inhibition in the IC have not yet been explored. The aim of this study was to investigate pain alleviation effects after neuroglia inhibition in the IC during the early or late phase of pain development. The effects of glial inhibitors in early or late phase inhibition in neuropathic pain were characterized in astrocytes and microglia expressions in the IC of an animal model of neuropathic pain. Changes in withdrawal responses during different stages of inhibition were compared, and morphological changes in glial cells with purinergic receptor expressions were analyzed. Inhibition of glial cells had an analgesic effect that persisted even after drug withdrawal. Both GFAP and CD11b/c expressions were decreased after injection of glial inhibitors. Morphological alterations of astrocytes and microglia were observed with expression changes of purinergic receptors. These findings indicate that inhibition of neuroglia activity in the IC alleviates chronic pain, and that purinergic receptors in glial cells are closely related to chronic pain development.

Learn More >

Preventive Supplementation of Omega-3 Reduces Pain and Pro-inflammatory Cytokines in a Mouse Model of Complex Regional Pain Syndrome Type I.

Complex regional pain syndrome type I (CRPS-I) is a condition that responds poorly to treatments. The role of omega-3 fatty acids in the treatment of inflammatory disorders is well described in the literature; however, few studies have evaluated its therapeutic benefits in different types of pain. We evaluated the potential antihyperalgesic and anti-inflammatory effects of preventive omega-3 supplementation in an animal model of CRPS-I. In experiment 1, Swiss female mice were supplemented for 30 days with omega-3 before the induction of the CRPS-I model and 14 days after. Mechanical hyperalgesia was evaluated at baseline and from the 4th to the 14th day after CPRS-I induction along with open field locomotor activity after 30 days of supplementation. In experiment 2, Swiss female mice were supplemented for 30 days with omega-3 and then subjected to the CRPS-I model. Twenty-four hours later the animals were euthanized, and tissue samples of the spinal cord and right posterior paw muscle were taken to measure pro-inflammatory cytokine TNF and IL-1β concentrations. Omega-3 supplementation produced antihyperalgesic and anti-inflammatory effects, as well as reducing pro-inflammatory cytokine concentrations, without altering the animals' locomotion. No open field locomotor changes were found. The 30-day supplementation at the tested dose was effective in the CRPS-I model.

Learn More >

Comparative Efficacy and Safety of 11 Drugs as Therapies for Adults With Neuropathic Pain After Spinal Cord Injury: A Bayesian Network Analysis Based on 20 Randomized Controlled Trials.

To provide an updated analysis of the efficacy and safety of drugs for the management of neuropathic pain (NP) after spinal cord injury (SCI) based on Bayesian network analysis.

Learn More >

Search