I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Nemolizumab: First Approval.

Nemolizumab is a subcutaneously administered humanized anti-interleukin-31 (IL-31) receptor A (IL-31RA) monoclonal antibody that is being developed by Chugai Pharmaceutical Co. Ltd, Maruho Co. Ltd and Galderma Pharma S.A. for the treatment of skin diseases, including atopic dermatitis (AD), AD associated pruritus (ADaP), prurigo nodularis (PN), chronic kidney disease associated pruritus (CKDaP) and systemic sclerosis (SSc). IL-31 is a neuroimmune cytokine that induces itch, inflammation, keratinocyte differentiation and fibroblast activation in chronic pruritic skin diseases. Nemolizumab (Mitchga Syringes) was approved in Japan on 28 March 2022 for use in adults and children over the age of 13 years for the treatment of itch associated with AD (only when existing treatment is insufficiently effective). This article summarizes the milestones in the development of nemolizumab leading to this first approval.

Learn More >

Evaluation of Gabapentin and Transforaminal Corticosteroid Injections for Brachioradial Pruritus.

Learn More >

Dupilumab for the treatment of adult atopic dermatitis in special populations.

Special populations (SPs) involve people who require additional consideration in clinical research. Effectiveness of treatment or occurrence of side effects may be different in SPs with respect to not-SPs.

Learn More >

Efficacy of corticosteroids for hand osteoarthritis – a systematic review and meta-analysis of randomized controlled trials.

There is some evidence that corticosteroids may have a beneficial effect in hand osteoarthritis. We examined the efficacy of corticosteroids on symptoms and structural outcomes in hand osteoarthritis.

Learn More >

Insight into the Crystal Structures and Potential of Two Newly Synthesized Naproxen-Based Hydrazide Derivatives as Potent COX-2 Inhibitors.

Although nonsteroidal anti-inflammatory drugs (NSAIDs) are medicines that are widely used to relieve pain, reduce inflammation, and bring down high temperature, literature confirmed that they still have harmful side effects. Most of their side effects are in the digestive system due to the carboxylic group. As naproxen is one of the NSAIDs, in this work, we try to mask the carboxylic group in naproxen with a relatively safe functional group. So, herein, we report the synthesis of new naproxen-based hydrazones derivatives, namely, (E)-N'-1-(4-chlorophenyl)ethylidene)-2-(6-methoxynaphthalen-2-yl)propane hydrazide (4a) and (E)-N'-(4-hydroxybenzylidene)-2-(6-methoxynaphthalen-2-yl)propane hydrazide ethanol solvate (4b). The compounds were confirmed by X-ray diffraction studies. Hirshfeld surface analyses and energy frameworks of 4a and 4b have been carried out and blind molecular docking studies of them to the COX-2 enzyme were undertaken to obtain binding affinities for judging whether the compounds could act as anti-inflammatory agents. The compounds interact with the key residues: Arg120, Val349, Leu352, Tyr355, Val523, Ala527, Ser530, and Leu531 of the active enzyme pocket. Molecular dynamics studies predicted that the complexes of 4a and 4b with COX-2 are structurally stable and no major conformational changes were observed. Confirmation of the docking and simulation data was achieved by a binding free energies analysis that indicated the dominance of van der Waals energy. The compounds are drug-like molecules as they obey all prominent drug-like rules and have acceptable pharmacokinetic profiles. To investigate the relationship between their intrinsic electronic properties and their possible similarities to actual drugs, the gas-phase DFT optimizations and NBO analyses were also performed in this study.

Learn More >

NIR-PTT/ROS-Scavenging/Oxygen-Enriched Synergetic Therapy for Rheumatoid Arthritis by a pH-Responsive Hybrid CeO-ZIF-8 Coated with Polydopamine.

Rheumatoid arthritis (RA) is an inflammatory type of arthritis that causes joint pain and damage. The inflammatory cell infiltration (e.g., M1 macrophages), the poor O supply at the joint, and the excess reactive oxygen species (ROS)-induced oxidative injury are the main causes of RA. We herein report a polydopamine (PDA)-coated CeO-dopped zeolitic imidazolate framework-8 (ZIF-8) nanocomposite CeO-ZIF-8@PDA (denoted as ) that can synergistically treat RA. Under near-infrared (NIR) light irradiation, PDA efficiently scavenges ROS and results in an increased temperature in the inflamed area because of its good light-to-heat conversion efficiency. The rise of temperature serves to obliterate hyper-proliferative inflammatory cells accumulated in the diseased area while vastly promoting the collapse of the acidic-responsive skeleton of ZIF-8 to release the encapsulated CeO. The released CeO exerts its catalase-like activity to relieve hypoxia by generating oxygen via the decomposition of HO highly expressed in the inflammatory sites. Thus, the constructed composite can treat RA through NIR-photothermal/ROS-scavenging/oxygen-enriched combinative therapy and show good regression of pro-inflammatory cytokines and hypoxia-inducible factor-1α (HIF-1α) in vitro and promising therapeutic effect on RA in rat models. The multimodal nano-platform reported herein is expected to shed light on the design of synergistic therapeutic nanomedicine for effective RA therapy.

Learn More >

Multi-chemokine receptor antagonist RAP-103 inhibits opioid-derived respiratory depression, reduces opioid reinforcement and physical dependence, and normalizes opioid-induced dysregulation of mesolimbic chemokine receptors in rats.

Chemokine-opioid crosstalk is a physiological crossroads for influencing therapeutic and adverse effects of opioids. Activation of chemokine receptors, especially CCR2, CCR5 and CXCR4, reduces opioid-induced analgesia by desensitizing OPRM1 receptors. Chemokine receptor antagonists (CRAs) enhance opioid analgesia, but knowledge about how CRAs impact adverse opioid effects remains limited. We examined effects of RAP-103, a multi-CRA orally active peptide analog of "DAPTA", on opioid-derived dependence, reinforcement, and respiratory depression in male rats and on changes in chemokine and OPRM1 (µ opioid) receptor levels in mesolimbic substrates during opioid abstinence. In rats exposed to chronic morphine (75 mg pellet x 7 d), daily RAP-103 (1 mg/kg, IP) treatment reduced the severity of naloxone-precipitated withdrawal responses. For self-administration (SA) studies, RAP-103 (1 mg/kg, IP) reduced heroin acquisition (0.1 mg/kg/inf) and reinforcing efficacy (assessed by motivation on a progressive-ratio reinforcement schedule) but did not impact sucrose intake. RAP-103 (1-3 mg/kg, IP) also normalized the deficits in oxygen saturation and enhancement of respiratory rate caused by morphine (5 mg/kg, SC) exposure. Abstinence from chronic morphine elicited brain-region specific changes in chemokine receptor protein levels. CCR2 and CXCR4 were increased in the ventral tegmental area (VTA), whereas CCR2 and CCR5 were reduced in the nucleus accumbens (NAC). Effects of RAP-103 (1 mg/kg, IP) were focused in the NAC, where it normalized morphine-induced deficits in CCR2 and CCR5. These results identify CRAs as potential biphasic function opioid signaling modulators to enhance opioid analgesia and inhibit opioid-derived dependence and respiratory depression.

Learn More >

Ditans: a new prospective for the therapy of migraine attack?

Migraine attack is characterized by disabling pain and associated symptoms. Triptans represent the "gold standard" therapy, but cardiac subjects have significant limitations for this approach. New drug families are under consideration to expand therapeutic offerings, especially in the presence of contraindications or for non-responsive patients. This review aimed to analyze studies related to the category of "ditans," with a focus on lasmiditan, which is available for human use.

Learn More >

TAK-242 treatment and its effect on mechanical properties and gene expression associated with IVD degeneration in SPARC-null mice.

Intervertebral disc (IVD) degeneration is accompanied by mechanical and gene expression changes to IVDs. SPARC-null mice display accelerated IVD degeneration, and treatment with (toll-like receptor 4 (TLR4) inhibitor) TAK-242 decreases proinflammatory cytokines and pain. This study examined if chronic TAK-242 treatment impacts mechanical properties and gene expression associated with IVD degeneration in SPARC-null mice.

Learn More >

Treatments for psoriasis: A journey from classical to advanced therapies. How far have we reached?

Psoriasis is considered an autoimmune, inflammatory disorder with a genetic basis. The underlying aetiology is yet unclear. Evidence suggests the congregation of immune cells and their secreted inflammatory cytokines, leukocytes, and other inflammation-promoting factors in large amounts within the epidermal layers of the skin, driving an inflammatory milieu. Although psoriasis is not a fatal condition, patients experience severe pain and suffering. It has a debilitating effect on the physiological and psychological state of the patient. Its distinguishing features are inflammation, formation of plaques on the skin and hyperproliferation of keratinocytes. Therapeutic strategies for treating psoriasis witnessed a radical improvement from traditional therapies to the approval of specific therapies like biologics and small molecules. The emerging evidence about new pharmacological targets and mechanisms in psoriasis has widened the scope for expanding therapeutic strategies. Our review discusses the existing treatments for plaque psoriasis and updates on therapies based on novel pharmacological targets in clinical development.

Learn More >

Search