I am a
Home I AM A Search Login

Animal Studies

Share this

The methyl donor S-adenosyl methionine reverses the DNA methylation signature of chronic neuropathic pain in mouse frontal cortex.

Chronic pain is associated with persistent but reversible structural and functional changes in the prefrontal cortex (PFC). This stable yet malleable plasticity implicates epigenetic mechanisms, including DNA methylation, as a potential mediator of chronic pain-induced cortical pathology. We previously demonstrated that chronic oral administration of the methyl donor S-adenosyl methionine (SAM) attenuates long-term peripheral neuropathic pain and alters global frontal cortical DNA methylation. However, the specific genes and pathways associated with the resolution of chronic pain by SAM remain unexplored.

Learn More >

Intracellular versus extracellular inhibition of calpain I causes differential effects on pain in a rat model of joint inflammation.

Calpain I is a calcium-dependent cysteine protease which has dual effects on tissue inflammation depending on its cellular location. Intracellularly, calpain I has pro-inflammatory properties but becomes anti-inflammatory when exteriorised into the extracellular space. In this study, the effect of calpain I on joint pain was investigated using the kaolin/carrageenan model of acute synovitis. Evoked pain behaviour was determined by von Frey hair algesiometry and non-evoked pain was measured using dynamic hindlimb weight bearing. Local administration of calpain I reduced secondary allodynia in the acute inflammation model and this effect was blocked by the cell impermeable calpain inhibitor E-64c. Calpain I also blocked the algesic effect of the protease activated receptor-2 (PAR-2) cleaving enzyme mast cell tryptase. The cell permeable calpain blocker E-64d also produced analgesia in arthritic joints. These data suggest that calpain I produces disparate effects on joint pain . analgesia when present extracellularly by disarming PAR-2, and pro-algesic when the enzyme is inside the cell.

Learn More >

Sex differences in the role of atypical PKC within the basolateral nucleus of the amygdala in a mouse hyperalgesic priming model.

Though sex differences in chronic pain have been consistently described in the literature, their underlying neural mechanisms are poorly understood. Previous work in humans has demonstrated that men and women differentially invoke distinct brain regions and circuits in coping with subjective pain unpleasantness. The goal of the present work was to elucidate the molecular mechanisms in the basolateral nucleus of the amygdala (BLA) that modulate hyperalgesic priming, a pain plasticity model, in males and females. We used plantar incision as the first, priming stimulus and prostaglandin E (PGE) as the second stimulus. We sought to assess whether hyperalgesic priming can be prevented or reversed by pharmacologically manipulating molecular targets in the BLA of male or female mice. We found that administering ZIP, a cell-permeable inhibitor of aPKC, into the BLA attenuated aspects of hyperalgesic priming induced by plantar incision in males and females. However, incision only upregulated PKCζ/PKMζ immunoreactivity in the BLA of male mice, and deficits in hyperalgesic priming were seen only when we restricted our analysis to male mice. On the other hand, intra-BLA microinjections of pep2m, a peptide that interferes with the trafficking and function of GluA2-containing AMPA receptors, a downstream target of aPKC, reduced mechanical hypersensitivity after plantar incision and disrupted the development of hyperalgesic priming in both male and female mice. In addition, pep2m treatment reduced facial grimacing and restored aberrant behavioral responses in the sucrose splash test in male and female primed mice. Immunofluorescence results demonstrated upregulation of GluA2 expression in the BLA of male and female primed mice, consistent with pep2m findings. We conclude that, in a model of incision-induced hyperalgesic priming, PKCζ/PKMζ in the BLA is critical for the development of hyperalgesic priming in males, while GluA2 in the BLA is crucial for the expression of both reflexive and affective pain-related behaviors in both male and female mice in this model. Our findings add to a growing body of evidence of sex differences in molecular pain mechanisms in the brain.

Learn More >

Chemokine receptor CXCR4 activates the RhoA/ROCK2 pathway in spinal neurons that induces bone cancer pain.

Chemokine receptor CXCR4 has been found to be associated with spinal neuron and glial cell activation during bone cancer pain. However, the underlying mechanism remains unknown. Furthermore, the RhoA/ROCK2 pathway serves as a downstream pathway activated by CXCR4 during bone cancer pain. We first validated the increase in the expressions of CXCR4, p-RhoA, and p-ROCK2 in the spinal dorsal horn of a well-characterized tumor cell implantation-induced cancer pain rat model and how these expressions contributed to the pain behavior in tumor cell implantation rats. We hypothesized that spinal blockade of the CXCR4-RhoA/ROCK2 pathway is a potential analgesic therapy for cancer pain management.

Learn More >

Spinal glial cell line-derived neurotrophic factor infusion reverses reduction of Kv4.1-mediated A-type potassium currents of injured myelinated primary afferent neurons in a neuropathic pain model.

High frequency spontaneous activity in injured primary afferents has been proposed as a pathological mechanism of neuropathic pain following nerve injury. Although spinal infusion of glial cell line-derived neurotrophic factor (GDNF) reduces the activity of injured myelinated A-fiber neurons after 5th lumbar (L5) spinal nerve ligation (SNL) in rats, the implicated molecular mechanism remains undetermined. The fast-inactivating transient A-type potassium current (IA) is an important determinant of neuronal excitability, and five voltage-gated potassium channel (Kv) alpha-subunits, Kv1.4, Kv3.4, Kv4.1, Kv4.2, and Kv4.3, display IA in heterologous expression systems. Here, we examined the effect of spinal GDNF infusion on IA and the expression of these five Kv mRNAs in injured A-fiber neurons using the in vitro patch clamp technique and in situ hybridization histochemistry. GDNF infusion reversed axotomy-induced reduction of the rheobase, elongation of first spike duration, and depolarization of the resting membrane potential. L5 SNL significantly reduced the current density of IA and GDNF treatment reversed the reduction. Among the examined Kv mRNAs, only the change in Kv4.1-expression was parallel with the change in IA after SNL and GDNF treatment. These findings suggest that GDNF should reduce the hyperexcitability of injured A-fiber primary afferents by IA recurrence. Among the five IA-related Kv channels, Kv4.1 should be a key channel, which account for this IA recurrence.

Learn More >

Inhibiting STAT3 in a murine model of human breast cancer-induced bone pain delays the onset of nociception.

Aggressive breast cancer subtypes utilize system x, a membrane antiporter, to import cystine for glutathione synthesis and maintenance of redox homeostasis, in turn releasing glutamate as a metabolic pro-nociceptive by-product. Metastatic breast cancers establish themselves at distal sites including bone, where changes in extracellular glutamate levels contribute to cancer-induced bone pain. We previously established that stearically blocking system x activity with sulfasalazine delays the onset of nociceptive behaviours and that xCT, the functional antiporter subunit, is positively regulated by signal transducer and activator of transcription 3 (STAT3). In the current investigation, a murine xenograft cancer-induced bone pain model was applied to examine whether pharmacological inhibition of phosphorylated STAT3 (pSTAT3) induces changes in nociception. A high glutamate-releasing, xCT/pSTAT3 over-expressing human breast cancer cell line was selected for injection into the distal epiphysis of the right femur of female nude mice. A 14-day regimen of intraperitoneal injections with either vehicle or the novel STAT3 inhibitor DR-1-55 commenced three weeks after initial intrafemoral bone injection. Nociceptive behaviours were temporally monitored by automated von Frey, dynamic weight bearing and open-field testing for the duration of the study, beginning at the baseline. Prior to sacrifice and at ethical end point, tumour-induced osteolytic lesions were radiographically assessed. Treatment with DR-1-55 significantly delayed the onset and severity of spontaneous and induced nociceptive behaviours, also decreasing human SLC7A11 ( xCT) mRNA levels in tumour-bearing limbs without altering osteolysis. In addition, two pro-inflammatory cytokines released by this cell line, interleukin 6 and interleukin 1β, were also down-regulated at the mRNA level in response to DR-1-55 treatment in vivo, with lower human interleukin 6 levels detected in the host circulation. This study demonstrates that targeting pSTAT3 may be a viable therapeutic means to manage cancer-induced bone pain, alone or in combination with stearic system x blockers.

Learn More >

Trigeminal Nerve Transection-Induced Neuroplastic Changes in the Somatosensory and Insular Cortices in a Rat Ectopic Pain Model.

The primary sensory cortex processes competitive sensory inputs. Ablation of these competitive inputs induces neuroplastic changes in local cortical circuits. However, information concerning cortical plasticity induced by a disturbance of competitive nociceptive inputs is limited. Nociceptive information from the maxillary and mandibular molar pulps converges at the border between the ventral secondary somatosensory cortex (S2) and insular oral region (IOR); therefore, S2/IOR is a suitable target for examining the cortical changes induced by a disturbance of noxious inputs, which often causes neuropathic pain and allodynia. We focused on the plastic changes in S2/IOR excitation in a model of rats subjected to inferior alveolar nerve transection (IANX). Our optical imaging using a voltage-sensitive dye (VSD) revealed that the maxillary molar pulp stimulation-induced excitatory propagation was expanded one to two weeks after IANX at the macroscopic level. At the cellular level, based on Ca imaging using two-photon microscopy, the amplitude of the Ca responses and the number of responding neurons in S2/IOR increased in both excitatory and inhibitory neurons. The laser scanning photostimulation (LSPS) revealed that Layer II/III pyramidal and GABAergic fast-spiking neurons in S2/IOR received larger excitatory inputs from Layer IV in the IANX models, which supports the findings obtained by the macroscopic and microscopic optical imaging. Furthermore, the inhibitory postsynaptic inputs to the pyramidal neurons were decreased in the IANX models, suggesting suppression of inhibitory synaptic transmission onto excitatory neurons. These results suggest that IANX induces plastic changes in S2/IOR by changing the local excitatory and inhibitory circuits.

Learn More >

Inflammatory and neuropathic gene expression signatures of chemotherapy-induced neuropathy induced by vincristine, cisplatin and oxaliplatin in C57BL/6J mice.

Vincristine, oxaliplatin, and cisplatin are commonly prescribed chemotherapeutic agents for the treatment of many tumors. However, a main side-effect is chemotherapy-induced peripheral neuropathy (CIPN), which may lead to changes in chemotherapeutic treatment. Although symptoms associated with CIPN are recapitulated by mouse models, there is limited knowledge of how these drugs affect the expression of genes in sensory neurons. The present study carried out a transcriptomic analysis of dorsal root ganglia (DRG) following vincristine, oxaliplatin, and cisplatin treatment with a view to gain insight into the comparative pathophysiological mechanisms of CIPN. RNA-Seq revealed 368, 295 and 256 differential expressed genes (DEGs) induced by treatment with vincristine, oxaliplatin and cisplatin, respectively and only five shared genes were dysregulated in all three groups. Cell type enrichment analysis and gene set enrichment analysis showed predominant effects on genes associated with the immune system after treatment with vincristine, while oxaliplatin treatment affected mainly neuronal genes. Treatment with cisplatin resulted in a mixed gene expression signature. Perspective: These results provide insight into the recruitment of immune responses to DRG and indicate enhanced neuro-inflammatory processes following administration of vincristine, oxaliplatin, and cisplatin. These gene expression signatures may provide insight into novel drug targets for treatment of CIPN.

Learn More >

Cathepsin S acts via protease-activated receptor 2 to activate sensory neurons and induce itch-like behaviour.

Chronic itch is a debilitating condition characterised by excessive scratching and is a symptom frequently reported in skin diseases such as atopic dermatitis. It has been proposed that release of the cysteine protease Cathepsin S (CatS) from skin keratinocytes or immune cells resident in or infiltrating the skin could act as a pruritogen in chronic itch conditions. CatS is known to activate protease-activated receptor 2 (PAR2). We therefore hypothesised that enzymatic activation of neuronally expressed PAR2 by CatS was responsible for activation of sensory neurons and transmission of itch signals. Intradermally-injected human recombinant (hr)-CatS or the PAR2 agonist, SLIGRL-NH behaved as pruritogens by causing scratching behaviour in mice. Hr-CatS-induced scratching behaviour was prevented by CatS inhibitors and PAR2 antagonists and reduced by 50% in TRPV1 mice compared with wild-type mice, whilst no significant reduction in scratching behaviour was observed in TRPA1 mice. Cultured dorsal root ganglion (DRG) cells showed an increase in [Ca] following incubation with hr-CatS, and the percentage of neurons that responded to hr-CatS decreased in the presence of a PAR2 antagonist or in cultures of neurons from TRPV1 mice. Taken together, our results indicate CatS acts as a pruritogen via PAR2 activation in TRPV1-expressing sensory neurons.

Learn More >

Preoperative anxiety induced glucocorticoid signaling reduces GABAergic markers in spinal cord and promotes postoperative hyperalgesia by affecting Npas4.

Preoperative anxiety is common in patients undergoing elective surgery and is closely related to postoperative hyperalgesia. In this study, a single prolonged stress (SPS) model was used to induce preoperative anxiety-like behavior in rats 24h before the surgery. We found that SPS exacerbated the postoperative pain and elevated the level of serum corticosterone (CORT). Previous studies have shown that glucocorticoid (GC) is associated with synaptic plasticity, and decreased spinal GABAergic activity can cause hyperalgesia in rodents. Here, SPS rats lumbar spinal cord showed reduced glutamic acid decarboxylase-65 (GAD65), glutamic acid decarboxylase-67 (GAD67), GABA type A receptor alpha 1 subunit (GABAA α1), and GABA type A receptor gamma 2 subunit (GABAA γ2) , indicating an impairment of GABAergic system. Furthermore, Neuronal PAS domain protein 4 (Npas4) was also reduced in rats after SPS stimulation, which has been reported to promote GABAergic synapse development. Then intraperitoneal injection of RU486 (a glucocorticoid receptor antagonist) rather than spironolactone (a mineralocorticoid receptor antagonist) was found to relieve SPS induced hyperalgesia and reverse Npas4 reduction and the impairment of GABAergic system. Further over-expressing Npas4 could also restore the damage of GABAergic system caused by SPS while interfering with Npas4 caused an opposite effect. Finally, after stimulation of rat primary spinal cord neurons with exogenous CORT in vitro, Npas4 and GABAergic markers were also down-regulated, and RU486 reversed that. Together, our results demonstrated that preoperative anxiety led to GABAergic system impairment in spinal cord and thus caused hyperalgesia due to glucocorticoid-induced down-regulation of Npas4.

Learn More >

Search